
ETMS System Design Document
Version 5.8

18–1

Section 18

Flight Table Manager Function

The purpose of the Flight Table Manager (FTM) function is to maintain a database containing
flight information on all flights operating under the FAA Instrument Flight Rules (IFR) and to
provide timely updates of aircraft positions to the Aircraft Situation Display(ASD) function. The
FTM also provides flight data to various programs upon request.

Design Issue: Database Design
The information maintained in the FTM database includes aircraft flight plans, flight plan
modifications, position reports, arrival and departure data, and route data required to produce
map files.

The FTM database is composed of seven shared regions and one header file. These regions
reside in the /ftm_check directory on the node running the FTM process. Other processes
running on this node may access these regions, but only the FTM process is authorized to write
to any of them. Each region is named ftm_checkpoint_file_x, where x is a letter from a to g.

The file ftm_checkpoint_file_a contains the often used portion of each flight record. Since most
of the data correlation of messages to FTM can be performed with this data, it was intentionally
designed for its contents, size, and page alignment properties for fast and frequent traversal. The
key to this region is named flight_array1.

The file ftm_checkpoint_file_b contains the variable portion of the flight record. This includes
waypoints (4 bytes each), sectors (6 bytes), fixes (6 bytes), airways (6 bytes), Air Route Traffic
Control Centers (ARTCCs, 3 bytes), and field 10 messages (1 byte) generated by the Flight
Database (FDB). This data is stored adjacent to each other with no intervening spaces. The FTM
maintains the number of entries in each field and upon extraction moves the appropriate number
of bytes from the offset according to the following formula:

waypoints*4 + sectors*6 + fixes*6 + airways*6 + ARTCCs*3 + route_size

The route data is stored in 248 byte pages, with an additional eight bytes used for addressing
information. Thus, 518 bytes of data would occupy three pages with the third only using
twenty-two of the available bytes. The format of the eight control bytes is

• 1 through 4 – Address of the flight record owning this page

• 5 through 6 – Size code (32000 = continuation) the number of pages used

• 7 through 8 – Number of bytes used on this page

ETMS System Design Document
Version 5.8

18–2

The key to this file is the record flight_array_rte.

The file ftm_checkpoint_file_c contains the flight hash table. The aircraft identifier (ACID) is
hashed to a location in this table. That location provides an index into the
ftm_checkpoint_file_a file which begins the linked list. If the first record is not the desired
ACID the Next One field is checked to provide the location of the next element in the list. The
key to this file is flight_table_hash.

The file ftm_checkpoint_file_d contains the flight table in use bitmap. If the value is one then
that position is in use within files ftm_checkpoint_file_a and ftm_checkpoint_file_g. If the
value is zero then that subscript position is available. The key to this file is flight_storage.

The file ftm_checkpoint_file_e contains the active table. This table is used to facilitate map
making. The file contains an active hash table, an in use bitmap, and a linked list. Each element
in the list contains an ACID, index into ftm_checkpoint_file_a, and a pointer to the next
element in the list. The key to this file is flight_active.

The file ftm_checkpoint_file_f contains the airport table. This table lists all flights arriving at
and departing from specified airports (supplied by pacing.dat file) for twelve hours in the past to
twelve hours in the future. Each element in the table contains the airport identifier, time, arrival
time, and departure time with an index into ftm_checkpoint_file_a. The key to this region is
flight_airport.

The file ftm_checkpoint_file_g contains the low-use fixed portion of the flight record. There is
a one-to-one correspondence between this file and ftm_checkpoint_file_a. A record in this file
contains a pointer to the location of the variable portion of the flight record in
ftm_checkpoint_file_b. The key to this file is flight_array2.

The file shared_region_header is a record file containing information about the shared regions.
This information is maintained to help the FTM determine the validity of the database upon
startup. Fields of this record include the region creation time, the region running time, the
number of times FTM has been started and stopped since the region was created, and the total
number of flights created and deleted since the region was created. The key to this file is
shared_region_header.

In summary, a flight record in the FTM database is found by hashing the aircraft identifier (up to
7 characters), which produces an index. This index is then used to traverse the linked list found
in ftm_checkpoint_file_a until the appropriate entry is located. The ordinal position of this entry
in flight_array1 is used to obtain the remainder of the fixed portion of the flight record in
flight_array2. This array contains the address of the first page containing the variable sized
route information (in ftm_checkpoint_file_b) under the pointer flight_array_rte.

ETMS System Design Document
Version 5.8

18–3

When a new flight record is to be added, the next available position is found by incrementing the
global variable flight_array_last_slot. If this variable is greater than total_flight_records it is
reset to one. If the in use bit in ftm_checkpoint_d is set, then the procedure is repeated until an
available position is found. When this occurs, that address is used for the new data, and the bit is
set to in use.

To add a record to the active table (ftm_checkpoint_file_e) the next available position is found
by incrementing the variable flight_active_last_slot. If the value exceeds
number_actives_allowed, the last slot is reset to one. The active in use bit map is searched
until an available position is found. Then that address is used and the bit is set to in use.

When there is route data to be added, the number of pages (248 bytes each) required is
calculated. If there is a route page area already allocated for this flight and the page count is the
same, the old data is overwritten. Otherwise, a suitable space must be found. To find the
available space the variable flight_array_rte_last_slot is incremented. If it exceeds
total_rte_pages, it is reset to one. The bitmap is checked to see if there is the correct number of
adjacent pages. If not, the procedure is repeated until an appropriate location is found. When
found, the in use bit is set in the RTE portion of flight_storage.

NOTE: When the FTM is restarted, the shared regions are reloaded with previous values, and all
last slot variables are reinitialized to one.

Processing Overview
Figure 18-1 illustrates the data flow of FTM functions at the ETMS hub site; the normal mode is
shown. For slave mode, substitute FDBD with Master FTM. For backup mode, substitute FDBD
with Master FTM, change FTM to FTMB, and remove clients. Client type is shown in
parenthesis. For further discussion of the different modes, refer to Section 18.1.

Figure 18-2 depicts the data flow of the FTM function at each field site. The FTM extracts
appropriate information received from the Flight Database Distributor (FDBD) and adds it to its
flight tables, and every map cycle interval it produces a report of all active flights, which it
distributes to the ASD in the form of map and route (rte) files. The field site FTM also processes
requests from the ASD for specific flight information.

ETMS System Design Document
Version 5.8

18–4

Queue Driver

FDBD

FTM

NAS
Distribution

Parser

FDB

Listserver/Netmail
(User Interface)

ASD
(map)

FTM
Stats/Logger

(stats)

FTM Coproc
(report)

FTMB/Slave
FTM (raw)

Statistical
Information

Flight Position
Tables

Flight
Transaction

Data

List Requests

Statistics and
Reconfigure

Requests

TTM-FTM
Transaction

Data

Flight
Transaction

Data

NAS Data

List Requests

List Request
Responses

Figure 8-1. FTM Interface at Central Site

The FTM Function is composed of two processes: Flight Table Manager (FTM) and
FTM_Coprocess, as shown in Figure 18-3. The FTM process requests for and receives data from
FDBD, processes the data, maintains the FTM database, produces map files, and returns replies.
The FTM_Coprocess program receives requests for reports from the FTM, processes them, and
forwards the reply to the requesting process. Both programs have read access to the shared
regions, but only the FTM process has write access. If the FTM_Coprocess program is not
available, the FTM process will produce the desired reports.

ETMS System Design Document
Version 5.8

18–5

Local
Host

Listserver/Netmail
(User Interface)

FTM Coproc
(report)

FTM
Stats/Logger

(stats)

FTMB/Slave
FTM (raw)

ASD

ASD

FTM

FDB Distributor
(via ETMS Comm)

ASD

ASD

FTM

Local Host Listserver/Netmail
(User Interface)

FTM Coproc
(report)

FTM
Stats/Logger

(stats)

FTMB/Slave
FTM (raw)

Raw Flight
Data: DZs and
TZs

Statistics and
Reconfigure

Requests
List Requests

List
Request
Responses

List Requests

Statistical
Information

Flight
Transaction
Data

Map/Route Files

TTM-FTM
Transaction

Data

Map/Route Files

List Requests

Statistical
Information

Flight
Transaction
Data

List
Request
Responses

Statistics and
Reconfigure

Requests
List Requests

Raw Flight
Data: DZs and
TZs

Figure 18-2. FTM Interface at Field Sites

ETMS System Design Document
Version 5.8

18–6

FTM FTM_Coprocess

Report
Requests

Reports

Map Files
Replies

Report
Requests

Reports

Figure 18-3. Data Flow of the FTM Process

18.1 Flight Table Manager Process

Purpose
The main purpose of the Flight Table Manager (FTM) is to maintain the FTM database, which is
built from flight data messages (transaction messages) received from the FDBD process. The
FTM uses this information to determine aircraft profiles and positions. The FTM produces and
distributes a report (map file) of all flights currently aloft (termed active) every minute (the
number of minutes between reports is user-configurable, see next section) to all map clients, i.e.,
the ASD program. These reports are used by the ASD to display the aircraft positions. The FTM
also processes requests from the ASD for specific flight information.

Other functions performed by the FTM include ETMS Network Address interfacing, statistics
collection, user request processing, reconfigure processing, recovery data processing, raw data
parsing, backup FTM (FTMB) implementation, error-logging, and disk archiving of data.

Modes. The FTM operates under one of three modes, normal mode, slave mode (also known as
tail mode), and backup mode. The mode determines the method of obtaining flight transaction
data generated by the FDBD process at the hub site. Transaction data is the record-formatted
flight information which has been fully processed by the ETMS Version 5 software, i.e. Parser
and FDB.

Under normal mode, FTM registers to receive data directly from an FDBD process. The
operational FDBDs run at the hub site.

Under slave mode, the FTM registers to receive data from another FTM, usually at a different
field site. Slave FTMs do not request recoveries, allowing their master FTM to manage the
FDBD connection.

Under backup mode, the FTM registers to receive data from another FTM, usually at the same
site. Functionally, backup FTMs operate differently from normal and slave FTMs in the
following ways: Backup FTMs do not generate map files if an output directory is unspecified in
the configuration file, do not request recoveries, do not accept clients, and connect to Network
Addressing as class FTMB, as opposed to FTM.

The mode is specified in the FTM configuration file, which is passed as an argument and
processed at startup. FTM can read and process a new or modified configuration file, changing
modes if specified, in response to Net.Mail reconfigure commands. The reconfigure command
may be used in either of the methods described below:

ETMS System Design Document
Version 5.8

18–7

<reconfigure> < address of the FTM process> [configuration filename]

NOTE: If a configuration file is not specified, FTM re-reads the current file.

<reconfigure> < address of the FTM process> $<primary FDBD site>

NOTE: If a secondary site is not supplied, it is assigned the same as the primary site.

Clients. FTM accepts four types of clients: report, map, stats, and raw.

Report clients register to FTM to assist in the processing of user-initiated flight database queries.
FTM_Coproc is a report client. For example, FTM receives an F ARR BOS command from a
Net.Mail process. FTM forwards this request to FTM_Coproc, which processes the request, and
returns the response information to FTM. FTM then forwards the response to the requestor
(Net.Mail).

Map clients register to FTM to receive notification of new map filenames from FTM. ASD is a
map client which reads these map files, and displays active flights based on their characteristics
as described within the map file.

Stats clients register to FTM to receive general statistics about the FTM, for example, map file
time, size, and name. Logger is a stats client.

Raw clients register to FTM to receive flight transaction data. Slave and Backup FTMs are raw
clients. As the master FTM receives transaction data, it is passed on to any raw clients.

FTM Configuration File Description. The FTM configuration file contains parameter values
that define the program's environment. These parameters can be dynamically changed, via the
reconfigure command in Net.mail, without restarting the program or clearing the FTM database.

Each parameter setting uses one line in the configuration file and each parameter has an
associated symbol, which must be specified in the first column of the line. Table 18-1 describes
the parameters.

ETMS System Design Document
Version 5.8

18–8

Table 18–1. Configuration File Symbols

This parameter symbol in
the first column of a line . . .

Instructs FTM to . . .

Ignore the content that follows. This symbol is intended to indicate
comments.

$ followed by a site name Interpret that the name is the primary data source site. FTM looks for
an FDBD process at the specified site to register as a client. The
second line beginning with $ indicates the secondary data source site,
which will be switched to in case of a connection (one minute) or data
(two minutes) timeout on the primary site connection. This is the
normal FTM operation.

* followed by a site name Run as a backup FTM (class FTMB), registering to a master FTM at the
specified site as a raw client. (An FTMB process maintains its own flight
database and does not create map files or perform recoveries.)

% followed by a site name Run as normal (class FTM), but to register as a raw client with an FTM
at the specified site. This type of FTM will be referred to as a Tail FTM.
Tail FTMs are intended to be used as a site’s sole FTM, creating map
files, but not performing recoveries (because their master FTM will
request any necessary recoveries).

! followed by a directory name Write its map, route, orig files output files on the node. If this symbol is
not specified or the directory provided does not exist, FTM will use the
default of /traffic.

^ followed by a digit from 1 to
9

Interpret that this is the number of minutes between each map file
creation (map cycle interval). The FTM reads only the first character
after the ^ and ignores the remainder of the line. Any invalid entry will
leave the map cycle interval set to its current value, if one exists, or
default to three minutes.

R or r in the first column Write any raw data received to an hourly log file in the output directory
under the name rawdata.<timestamp>. The default is not to write
these files.

& followed by a digit from 1 to
9

Interpret that this is the number of minutes the FTM will allow each
ARTCC to go without receiving a Position Update message (TZ) before
reporting its flights as ghosted (ghost determination interval).

This line is optional, and the default value is based on the map cycle
interval below. FTM reads only the first character after the & and
ignores the remainder of the line. Any invalid entry will cause the ghost
determination interval to be set to its default. Refer to Note 2 that
follows for the ghost determination default.

M or m Turn the military filter on. The default is off.

O or o Write orig (log) files of flight transaction data received. As a default,
FTM does not write the orig files.

NOTE 1: The configuration file must have one of the $, *, or % specifiers in order to run
properly. If more than one of them exist in the file, the order of precedence is *, %, $.

ETMS System Design Document
Version 5.8

18–9

NOTE 2: The ghost determination default is based on the following map cycle interval.

Map Interval Ghost Interval

1 minute 3 minutes

2 minutes 2 minutes

anything else 1 minute

NOTE 3: FTMBs do not respond to the Net.mail f commands. Use the corresponding Net.mail s
commands to retrieve stats from FTMBs.

Design Issue: Module Design
FTM is composed of the modules illustrated in Figure 18-4.

Misc Ms Pacing Parse Raw Recovery Report

Main Airport_ Table Extract Flight_
Handler Great_Circle Interface

FTM

Figure 18-4. FTM Modules

Following is a description of the FTM modules :

• FTM Main defines global variables, invokes the initialization module, transfers
control to the processing routine, and, when termination is signalled, invokes the
termination logic.

• Airport_Table maintains the airport tables found in the Shared Region
ftm_checkpoint_f.

• Extract is concerned with generating the map files sent to ASD every map cycle
interval.

• Flight_Handler is responsible for adding, modifying, searching, and deleting
entries within the FTM flight database (ftm_checkpoint files).

ETMS System Design Document
Version 5.8

18–10

• Great_Circle is used to calculate the great circle route for international flights.
It derives the heading and distance between a source position and its destination.
Since it required several trigonometric functions not available in Pascal, it is the
only routine coded in Fortran.

• Interface provides the interface to the ETMS Version 5 message switching
system. This module processes incoming messages, sends outgoing messages,
manages the client table, generates statistics and other reports, and registers for
flight data.

• Misc includes routines providing miscellaneous functions, including program
initialization, the main processing loop, queue management, configuration file
reading, time synchronization, and error reporting.

• Ms handles the flight database creation, mapping, and unmapping
(ftm_checkpoint files).

• Pacing maintains tables that contain the counts of arrivals and departures from
pacing airports.

• Parse All transaction messages are parsed and processed by the routines in this
module. The information is used to update the flight data tables in the database.

• Raw parses raw flight data only for Departure messages (DZs) and TZs and
incorporates the data into the FTM database.

• Recovery maintains recovery data statistics and handles the recovery protocol
with the FDB Recovery (FDBR) process.

• Report generates reports in response to user requests, writes them into files, and
forwards them to the requesting address. This module is shared by the
FTM_Coprocess.

Execution Control
The FTM process is normally started by the Nodescan utility after a new software release or after
a software or hardware crash.

Input
FTM has one mandatory argument and one optional argument at startup:

• The FTM configuration filename is a required argument. If a valid
configuration file is not supplied, the program will terminate. See the above
section FTM Configuration File Description for detailed information.

• The optional argument -path <etms_path> may also be supplied, indicating the
path where program-related objects, such as the ftm trace file, may be found. If
this argument is not supplied, no path will be prepended to these objects.

The following is a list of the types of FTM input:

• Packed transaction messages from the FDBD

ETMS System Design Document
Version 5.8

18–11

• Raw National Airspace System (NAS) messages from the local site

• Requests for data from the ASD or other programs in the ETMS

• Requests from the Net.mail program to reconfigure

• Requests from the Net.mail program for statistics

• Registration requests from clients

• User requests for specific flight data

• Remarks keywords file for National Route Program (NRP) parameters.

The input directory specified in the configuration file must contain the following three files
which are necessary to execute the FTM process:

• /etms5/ftm/data/airstrip.dat – The airport file contains the airport identifiers in
alphabetical order and the latitude and longitude of each airport. The numeric
fields are floating point ASCII, the integer portion indicating the degrees and the
decimal portion being the number of minutes divided by 60. If the airport is
below the equator or east in lat/lon, a negative sign is placed in front of each
value. Sample entries are

¡ ABQ 3.504175E+01 1.066063E+02

¡ ABR 4.545000E+01 9.843333E+01

• /etms5/ftm/data/ – The pacing airport file contains an alphabetical list of
airport identifiers that the FTM process will monitor for the ;A command and
for rapid ASD retrieval. It contains one airport code per line. For example:

¡ ATL

¡ BOS

All entries in each file must be alphabetical. FTM may not function properly if they are not.

Output
The following is a list of the types of FTM output:

• Map filenames containing flight data that are sent to the ASD at the time of each
map cycle interval

• Statistical information which is sent to Ftm_stats, the statistical display program

• Responses to data registration requests from other processes

• Responses to statistics requests from Net.mail

• Responses to reconfigure requests from Net.mail

• Report requests forwarded to FTM_Coprocess for processing

• Reports resulting from user requests which were not able to be handled by the
FTM_Coprocess

ETMS System Design Document
Version 5.8

18–12

The following is a list of the output data files generated by the FTM:

• map files – contains the most recent flight data for all active flights. These files
are created every map cycle interval (usually one minute or three minutes) and
reside in the output directory specified in the configuration file (usually /traffic).

• rte files – contains route information for active flights; has a one-to-one
correspondence to the map files. These files are created every map cycle
interval (usually one minute or three minutes) and reside in the output directory
specified in the configuration file (usually /traffic).

• ftm_trace_log – contains the trace-back information that identifies the status of
the FTM when it last terminated. This file resides in the /ftm/trace subdirectory
of the ETMS path specified by the program's second argument (usually /etms5).

• orig files (if turned on) – contains the packed transaction messages (as received
from the FDBD process). These files are created on the hour and reside in the
output directory specified in the configuration file. A separate program
dump_orig has been written to unpack the messages from these files and write
them to the screen.

• Raw data files – an hourly archival of raw messages received.

The files in the directory /ftm_check is the core of the FTM database. It is a group of files
containing the FTM database. It is updated dynamically and closed whenever the FTM is
terminated.

Processing
Flight data, both transaction and raw, comes in the form of various message types. The following
NAS message information is processed by the FTM:

• FS Flight Schedule

• FZ Flight Plan

• DZ Flight Departure

• TZ Position Report

• TO Oceanic Position Report

• AF Flight Amendment

• UZ ARTCC Boundary Crossing Notification

• AZ Flight Arrival

• RZ Flight Cancellation

• RS FS Cancellation

• EDCT Flight under Controlled Time

• 5-SETBACK Five-Minute Flight Departure Delay

ETMS System Design Document
Version 5.8

18–13

• SI-CANCEL Flight Cancellation due to Substitution

• CTL-CANCEL Cancellation of Flight under Controlled Time

• BLOCK ALT. Altitude Range Specification

• CRITICAL Critical Recovery Information

• TTM_FTM Remaining Recovery Information

• *RAW_TZ Raw TZ message

• *RAW_DZ Raw DZ message

NOTE: All flight messages above are transaction type messages except those denoted by *,

which are raw messages.

ETMS System Design Document
Version 5.8

18–14

18.1.1 The FTM Main Module

Purpose
This module contains the main section of the FTM process. It defines the global variables,
establishes constants, and passes control to other modules.

Input
None.

Output
The following global variables:

• status

• etms_valid

• timer

• cleanup_handler

Processing
Figure 18-5 illustrates the logical flow for the Main program. If no faults are detected upon
program initiation by the fault handler, the Set_Timer routine (Misc module) is called. The
start_time variable is set, the Initialize routine (Misc module) is called, the program timers are
set and the Process routine (Misc module) is called. Otherwise, if a fault is detected, the error
handling routines (Trace_Back [Misc module] and Flight_Table_Unmap [Flight_Handler
Module]) are called, all open streams are closed, all clients are closed (Close_Clients routine
[Interface module]) and registration to the data provider is cancelled (Register_To_Provider
[Interface module]).

ETMS System Design Document
Version 5.8

18–15

Begin

Establish Cleanup
Handler

Handler is
Set?

Process

Set Timer

Initialize

Set_Timer

End

Close all clients

Close
All streams

Release Cleanup
Handler

Flight_Table_
Unmap

Trace_Back

Exit

No (fault)

Yes (no fault)

Figure 18-5. Sequential Logic for the FTM Main Program

Error Conditions and Handling
The FTM Main Module calls the program cleanup handler upon program termination. Specific
error messages are listed in Table 18-21.

18.1.2 The Airport_Table Module

Purpose
This module maintains the airport table found in the Shared Region ftm_checkpoint_file_f and
the pacing table, which is held in memory.

Input
A Shared Region file– ftm_checkpoint_file_f.

ETMS System Design Document
Version 5.8

18–16

Output
Changes in the input file.

Processing
The routines in the Airport_Table module are concerned with maintaining the airport table and
the pacing table. The airport table contains aircraft identifiers that are proposed or have arrived
or departed in each 15-minute interval for 12 hours past and 12 hours future. The pacing table
contains the number of arrivals and departures for each 15-minute interval (bucket) for each
pacing airport.

Routines. The Airport_Table module is composed of the following independent routines that
run when called:

• Airport_Get_Position is given an airport identifier and a time. It returns the
index into the airport table and the appropriate time slot. It calls
Find_Airport_In_Pacing to find the airport identifier in the list. It then uses
Flight_Airport .̂which_is_first and Flight_Airport^.Interval_start to search
the circular buffer and determine the correct time slot.

• Airport_Header_Add_Flight gets a flight pointer, airport identifier, time, and
whether it's an arrival or a departure. First, this routine calls
Airport_Get_Position, which validates the airport identifier and returns the
correct time slot. If either of these values is invalid, the routine will return. If
the flight is already in that time bucket, the routine will return. Otherwise, it
will increment the bucket count for arrival or departure. If it exceeds the
maximum, it will set it to the maximum and add the flight data, where the
bucket count indicates; thus, having excess flights during a 15-minute interval
causes overwriting.

• Airport_Header_Advance_Interval deletes intervals that are too old and ensures
that the first interval is the correct one. First, it determines what the first interval
start time should be. Then, it advances until it reaches that interval. As it
advances, it zeroes out the arrival and departure counters and increments the
variable Flight_Airport .̂which_is_first. If the end of the buffer is reached, it
wraps around to the beginning.

• Airport_Header_Create_Table reads the airport codes from pacing.dat into a
table. Then it determines the time of the first 15-minute interval and clears out
all counters for all intervals for each airport in the table.

• Airport_Header_Delete_Flight uses a boolean value to determine if the flight is
an arrival or departure flight. Based on this and a time code passed in, it sets a
time value. It calls Airport_Get_Position to retrieve the index and the time slot.
Finally, it goes through the table to find the flight. When found, all the
following entries are moved down in the table, and the arrival or departure
counter is decremented.

ETMS System Design Document
Version 5.8

18–17

Error Conditions and Handling
If there is an error opening the pacing.dat file, a call is made to Error_$print. If there is an error
reading a record from this file, a message is written to the trace log, and that record is skipped.
Specific error messages are listed in Table 18-21.

18.1.3 The Extract Module

Purpose
The Extract module extracts the flight information for every active flight in the FTM flight table
database, and generates the map files. The map files contain the information that the ASD
program uses to produce the flight display.

Input
A Shared Region file – ftm_checkpoint_file_e, which holds the active flight table.

Output
The Extract module sends map file names to ASD processes, and statistical information to the
FTM_Stats process.

• map file name

• number of records

• TZ activity by ARTCC

Processing
The Extract module retrieves the flight data from the database every map cycle interval for
distribution to map clients (ASD programs). This module sends the following statistics to the
statistical display program (FTM_Stats) for a display on an Apollo node: map file output time,
size data, and flight status data (i.e., numbers of active, ghostable, expired, and pending flights).

During each map cycle interval, the FTM estimates the current position and heading of all active
aircraft in the database to be placed into the map file. First, the distance traveled since the
calculation is determined by the last reported speed, the time of the calculation, and the current
time. The current position is calculated by moving the flight toward its next waypoint from its
last calculated position by the distance travelled. The next waypoint must be in the flight's
waypoint list. The waypoint to be ghosted toward is validated by comparing the distance
travelled to the distance to the waypoint. If the waypoint is farther than the distance travelled, it
is used; otherwise, the next waypoint in the list is checked. This continues until a waypoint is
validated or the list has been traversed. If no waypoints are validated, the flight is ghosted
toward its destination airport.

ETMS System Design Document
Version 5.8

18–18

Routines. The Extract module is composed of the following independent routines:

• Build_Ascii_Altitude, given a numeric altitude and an altitude type, provides an
ASCII altitude and assigns it to the appropriate field in the database:
filed_ascii_altitude if the boolean parameter filed is true, ascii_altitude
otherwise.

• Calculate Distance is a function that provides the distance between x and y
values using the Great_Circle module.

• Calculate Location fills in information for the Flight_Table_Retrieve routine. It
attempts to calculate the current location for every active flight in the database.

• Flight_Table_Retrieve handles the extraction of data into the variable
map_record. It sets flags for ARTCCs that have not sent any TZ messages
since the last map file. When each entry has been processed, the map_record is
written to a disk file by the routine Write_to_Map_File. When all entries have
been processed, this routine closes the two files that make up a map file. The
Send_To_Clients routine (in the Misc module) is called to send the map file
names to all maps clients. A summary message is also sent by the
Stats_Send_Data (also in the Misc module) to all stats clients.

• Heading determines an aircraft's heading using source and destination
coordinates. It is set up for Albers projection but can be used for lat/lon by
reversing the x-coordinates.

• Map_Heading is a function which returns a character based on the provided
heading.

• Write_To_Map_File is given the name of a map stream. It checks if the stream
value is 0 (stdout); if so, the Read_Adapt_File routine is called, and map and rte
files are created with ios_$create, appending a date/time stamp to the filenames.
Otherwise, it can be assumed that the filenames and streams are intact.

If the global variable bad_map is true, then the routine is aborted. Next the
global variable map_route_output_rec is written to the map1_file_stream
(rte file) and map_output_rec is written to the given stream ID (map file)
using the ios_$put call. Map_number_entries is incremented.

Error Conditions and Handling
System call failures cause error messages to be written to the trace log. Specific error messages
are listed in Table 18-21.

ETMS System Design Document
Version 5.8

18–19

18.1.4 The Flight_Handler Module

Purpose
This routine manages the flight table database by performing the following functions: add,
delete, initialize, purge, rebuild, validate, and find. Refer to section 18.4 for more detailed
information on the flight table data structure.

Input
When performing add, delete, or find actions, the Flight_Handler module receives an aircraft
identifier (acid) for a flight; otherwise, it receives no input.

Output
The flight database is modified according to the action taken by the called procedures.

Processing
Figure 18-6 provides a diagram to help explain the organization for the FTM flight database. The
flight table is stored as an array of records. Upon flight table initialization, the hash table is
cleared, and each record is linked together in the allocated free space of the table. The hash table
is an array of pointers, each of which points to a linked list of elements.

 When a flight is to be located, the aircraft identifier of the flight is hashed, and the appropriate
address in the hash table is traversed. Each entry that is traversed is a subscript of an element in
the flight table (i.e., flight_table_entry_t). If the flight is not found, the entry is taken from the
free space in the array and put at the end of the linked list for that hashed address.

ETMS System Design Document
Version 5.8

18–20

Hash
Table

Flight
Table
entry

Flight
Table
Entry

Fixed
Data

Route
Data

Route
Data

Route
Data

Next Flight
Table Entry

Next Flight
Table
Entry

Route
Entry

Fixed
Data

Route
Data

Route
Data

Last Flight
Table
entry

Last Flight
Table
entry

Route
Entry

Fixed
Data

Route
Data

Route
Data

Figure 18-6. FTM Database Structure

Routines. The Flight_Handler module is composed of the following independent routines:

• Activate_Flight finds an available slot in the Flight_Active table by hashing the
acid. If there are no entries to this linked list, space is allocated by the
Active_Storage_Allocate routine. Otherwise, the linked list is traversed. If a
match is found, that entry is updated else space is allocated by the
Active_Storage_Allocate routine.

• Active_Storage_Allocate is a function which returns the index of the next
available slot or a -1 if the table is full. The search begins by examining the slot
following Flight_Active_Last_Slot. If the bitmap has a zero for that location
then that slot is returned and Flight_Active_Last_Slot and the bitmap are
adjusted. If not, the next location is examined.

• Create_Flight_Entry calls Flight_Table_Get_Next_One to allocate storage. The
acid is hashed. If there are no entries at this location, then it is added to the list
header and the entry is set up. If there are entries at the hash location, each is
examined to see if it has expired. If it has, then it is deleted.

When the end of the linked list is found, the pointer to the end is set to the
allocated space, and the entry is set up. The entry is set up by moving the acid
value into the records Flight_Array1 and Flight_Array2, along with creation,
update, and deletion times; all other elements are set to their default values.

ETMS System Design Document
Version 5.8

18–21

• Deactivate_Flight is given the acid to identify the flight. It hashes into the
active table and walks across the linked list until it finds the entry. Once found,
it uses the previous linked list address to link around the entry and clears the in
use flag in the bitmap.

• Delete_Active_Flight is given the index, pointer, and previous entry for the
element to be deleted. It links around the entry and clears the flag in the bitmap.

• Delete_Expired_Table_Entries walks through the entire flight table looking for
entries whose deletion time has passed and deletes them. Any entries with an
active flag of X or 2 are also deleted. For every 500 hash entries processed, it
calls the Check_Other_Activities routine. Delete_Expired_Table_Entries is
called every three map cycle intervals, and in response to the PURGE
command. This routine takes a long time to run and causes a significant amount
of page faulting.

• Find_Flight_Acid finds a flight in the active list by matching the 7-character
aircraft identifier (acid) to match raw messages from the local site (DZs and
TZs). It hashes the acid and traverses the linked list.

The departure time must be within 45 minutes of that in the database. If a
match is being searched with a DZ, then the airports are compared between the
message and the database. If a match is found, the index is returned with the
variable successful which is set to zero . If the search is unsuccessful, the
variable is set to one .

• Find_Flight_Acid_Oceanic finds an international flight in the active list by
matching the 7-character aircraft identifier (acid). It hashes the acid and
traverses the linked list. The entry matching closest against the departure time,
if one is found, is used. If a match is found, the index is returned with the
variable successful which is set to zero . If the search is unsuccessful, the
variables is set to one .

• Find_Flight_Acid_Time finds a flight in the active list by matching the 7-
character aircraft identifier (acid). It hashes the acid and traverses the linked
list. The list is searched for an entry where the input wanted_time falls between
the departure time and the arrival time (using the routines time_used_get_depart
and time_used get_arrival). If a match is found, the index is returned with the
variable successful which is set to zero . If the search is unsuccessful, the
variable is set to one .

• Find_Flight_On_Index takes a flight_index and a 7-character aircraft identifier
(acid). It hashes the acid and traverses the linked list. If an entry is found with
the flight_index, the index to the entry is returned. Otherwise, a nil entry is
returned signifying that no match was found.

• Find_Flight_On_Index_All performs the same function as
Find_Flight_On_Index, but also searches deactivated flights.

ETMS System Design Document
Version 5.8

18–22

• Flight_Table_Clear_Memory clears and recreates the flight database. It creates
and writes the /ftm_check/shared_region_header file, zeroes out the flight
table's in use bitmap, zeroes out the route table's in use bitmap, clears the flight
hash table, zeroes the active table's in use bitmap, clears the active hash table
and calls Airport_Header_Create_Table.

• Flight_Table_Extract_Field10 uses the provided flight pointer to determine the
starting address of the appropriate route block. When this address is located, the
necessary number of bytes are moved out. If another route block is needed, it is
obtained. This process is repeated until all the data is retrieved.

• Flight_Table_Extract_Fixes uses the provided flight pointer to determine the
starting address of the appropriate route block. When this address is located, the
necessary number of bytes is moved out. If another route block is needed it is
obtained. This process is repeated until all the data is retrieved.

• Flight_Table_Extract_Sectors uses the provided flight pointer to determine the
starting address of the appropriate route block. When this address is located, the
necessary number of bytes are moved out. If another route block is needed, it is
obtained. This process is repeated until all the data is retrieved.

• Flight_Table_Extract_Waypoints uses the provided flight pointer to determine
the starting address of the appropriate route block. When this address is located,
the necessary number of bytes are moved out. If another route block is needed,
it is obtained. This process is repeated until all the data is retrieved.

• Flight_Table_Get_Next_One is a function used to return the next available slot
in the flight table. It starts with Flight_Array_Last_Slot and searches the in
use bitmap for an unused position. When found, it updates
Flight_Array_Last_Slot and marks the spot in the bitmap. However, if no
available slot is found, then the table is full. Send_Stats_Display is called, and a
zero entry is returned for the location.

• Flight_Table_Release_Storage is given a table address. First, it validates the
address. If it is an active flight, it calls Deactivate_Flight. Then, it calls
Flight_Table_Rte_Release and clears the acid, active flag, and next pointer in
the flight table.

• Flight_Table_Rte_Insert adds route information to ftm_checkpoint_b. First it
calculates the number of pages required (248 bytes each). If too many (i.e., 9),
an error is returned. If the number of pages is the same as it was before, the old
data is overwritten. If not the same, the bitmap is searched to find enough
contiguous space. When found, the bitmap is marked, and the data is moved in.

• Flight_Table_Rte_Release is given a flight pointer. It clears out the control
information, data, and bitmap for each page owned by that flight.

• Flight_Table_Rte_Retrieve moves out all bytes of route data pertaining to a
specified flight.

ETMS System Design Document
Version 5.8

18–23

• Get_Flight_List is given a 7-character aircraft identifier (acid), which is
assigned to flight_list_acid. Flights_in_list is assigned 1 and flight_list[1] is
set to -1 to indicate no active flight. It hashes the acid to the active_table and
traverses the linked list.

With each entry, the flights_in_list global variable is incremented. If it finds an
active entry (by checking for an active flag of A or E), it puts the active entry in
the first position of the linked list. Next, the flight_table is hashed and the
linked list traversed. Along the way, the deletion_time of the flight is checked
to see if it is time to remove the entry from the database.

• Get_Flight_List_All is given a 7-character aircraft identifier (acid), which is
assigned to flight_list_acid. Flights_in_list is assigned 1 and flight_list[1] is
set to -1 to indicate no active flight. The acid is hashed to the active_table and
the linked list is traversed.

With each entry, the flights_in_list global variable is incremented. If an active
entry is found by checking for an active flag of A or E, the routine puts it in the
first position of the linked list. Next, the flight_table is hashed and the linked
list traversed. Along the way, the deletion_time of the flight is checked to see
if it is time to remove the entry from the database. The difference between this
routine and Get_Flight_List is that cancelled flights are also included in this
flight list.

• Hash_ACID_Active is a function which hashes an acid to obtain an index into
the active table.

• Time_Used_Get_Arrival sends back a code to indicate which of the five possible
times is being used for the arrival airport. The codes are

0 = not specified
1 = actual
2 = ttm/estimated
3 = controlled
4 = proposed
5 = scheduled

• Time_Used_Get_Depart sends back a code to indicate which of the five possible
times is being used for the departure airport. The codes are

0 = not specified
1 = actual
2 = ttm/estimated
3 = controlled
4 = proposed
5 = scheduled

• Time_Used_Set_Arrival sets the time being used for the arrival airport with one
of the following codes:

0 = not specified
1 = actual

ETMS System Design Document
Version 5.8

18–24

2 = ttm/estimated
3 = controlled
4 = proposed
5 = scheduled

• Time_Used_Set_Depart sets the time being used for the departure airport with
one of the following codes:

0 = not specified
1 = actual
2 = ttm/estimated
3 = controlled
4 = proposed
5 = scheduled

Error Conditions and Handling
The following error condition occurs in one routine in this module, if there is no room left in the
flight table:

Create_Flight_Entry Pfm_$Error_Trap

A traceback is saved and written to the trace log. Specific error messages are listed in Table
18-21.

ETMS System Design Document
Version 5.8

18–25

18.1.5 The Great_Circle Module

Purpose
This module calculates the polar spherical triangle for the great circle route between two
longitude/latitude points: the origin and destination of a flight.

Input
Great_Circle input consists of latitude and longitude values for the two points.

• lat1 – latitude

• lon1 – longitude

• lat2 – latitude

• lon2 – longitude

Output
Great_Circle output consists of the distance (in nautical miles) and aircraft heading. When the
calculated distance is zero, the returned heading is also zero.

• dist – distance

• hdg – heading

Processing
The Great_Circle module consists of one function, which computes the distance and heading for
a flight. It is used if no new position information has been received after a specified amount of
time for an international flight. It is the only routine written in Fortran.

Error Conditions and Handling
None.

18.1.6 The Interface Module

Purpose
This module provides the interface to the ETMS message switching system. This module
processes incoming messages, sends outgoing messages, manages the client table, generates
statistics and other reports, and registers for flight data.

ETMS System Design Document
Version 5.8

18–26

Input
The Interface module accepts the following global variables:

• sw_buffer

• sw_size

• address_list

• address

• cnt

The following global variables are outputs of the Interface module:

• sw_buffer

• sw_size

• address_list

• address_cnt

• blocks_from_sw

• blocks_to_swbytes_to_sw

• current_time

Processing
Routines. The Interface module is composed of the following routines:

• Add_A_Client moves the global variable sw_buffer into a local buffer of type
net$_user_reg_with_provider_t, a client registration structure. If the
service_count field of the buffer is 0, then Delete_A_Client is called. If the
service_ count is greater than net$_max_services_needed, an error message is
sent to the requesting client, and the routine is aborted.

The services field of the buffer is checked to determine the type of services the
prospective client is requesting. The client_table is then traversed by the
address field, checking if the prospective client already exists. If so, the new
information overwrites the existing information for the client. If the client is not
found to be in the table, it is added, and the appropriate global counters for each
type of service are incremented.

The Put_Data routine is called to notify the new client that it has been accepted.
The global variables client_count, stats_count, rpt_count, and raw_count are
incremented appropriately.

• Air_Req is given a report_buffer containing one or more airport identifiers.
For each one, the Find_Airport routine is called to validate the airport and return
its coordinates. The report_buffer is used as an output buffer where the airport

ETMS System Design Document
Version 5.8

18–27

information is stored in a readable format, listing the coordinates (whether or not
the airport is international) and the Alber's coordinates.

• Check_Flight_Data_List removes flight entries from the flight_data_list that
are past their removal time.

• Check_Sw_Mbox processes mailbox input from other ETMS processes and
forwards them to the appropriate handling routines. Messages are obtained
using the net$_get_message call, which is repeated until no messages are found.
Each message has a message type allowing the routine to delegate the message.
Message types that are recognized are described below. The global variables
blocks_from_sw and bytes_from_sw are incremented.

¡ Transaction type messages are passed to the Parse module for parsing.

¡ Client registration requests are passed to the Add_A_Client routine.

¡ Responses to FDBD registration for data are handled by the
Process_Good_Reg and Process_Bad_Reg routines.

¡ Responses to FTM registration requests (when running as FTMB) is handled
by the Reg_With_FTM routine (in the Misc module).

¡ Requests for statistics are passed along to the respective statistic compiling
routines, Stats_Level_0 through Stats_Level_9.

¡ Recovery protocol messages are handled by the Recovery_Parse_Messages
routine (in the Recovery module).

¡ User requests for specific flight data are handled by the
Pending_Queue_Push routine (in the Misc module). See Table 18-2 for a
description of all user requests. These commands are also known as f
commands because they may be issued with the Net.mail f
<command_name>, as well as from the ASD process via list requests. The
chart also indicates which of the commands are sent to the FTM_Coprocess
for processing.

• Close_Clients sends a net$_msg_reg_closed message to all clients and clears
the client table.

• Delete_A_Client searches for the provided client in the client_table and, if
found, removes it. The global variables client_count, raw_count, stats_count,
and rpt_count are decremented appropriately.

ETMS System Design Document
Version 5.8

18–28

Table 18–2. FTM Commands

Command Description Send to
Coproc

ADRFILLIT Expand ASD/ADR report with flight data Yes

AIR Display provided airport characteristics

AIRPHEADER Internal debugging command for airport header tables Yes

ARR Display arrivals from provided airport Yes

ARRIVALS Generate a file of arrivals at provided airport Yes

ARRT Display arrivals from provided airport ordered by time Yes

BOTH Generate a file of arrivals/departures at provided airport Yes

DEP Display departures from provided airport Yes

DEPARTURES Generate a file of departures at provided airport Yes

DEPT Display departures from provided airport ordered by time Yes

DUMPACTIVE Internal debugging command for active list Yes

FLIGHTS List all flights for a provided airline Yes

HELP Describe all FTM commands

LIF List all legs of a flight on ASCII Yes

LIFP List all legs of provided flights in binary

PACE Display pacing airport statistics

PURGE Remove all expired flights from database

SHO Show data for up to five flights

SITE Provide FDB site connections No

TDBFILLIT Expand TDB report with flight data Yes

TIME Return the time

VAL Same as PURGE

VALIDATE Internal debugging command for validating tables Yes

0,1,2,3,4,5,6,7 Stats_Level_0 through Stats_Level_7

• Display_Flight is given a flight pointer (count) and returns a buffer and
buffer_size , containing the flight's information in a readable format. All useful
database fields are included in the output.

• Display_Lif_Flight is given a flight pointer (count) and returns a buffer and
buffer_size , containing summarized information about all legs of a flight,

ETMS System Design Document
Version 5.8

18–29

including the arrival/departure airports and times and the routes. This routine is
called in response to the F LIF Net.mail command.

• Ftms_Process handles user requests when an FTM_Coprocess is not able,
calling the appropriate report generating routine for the command entered.

• Help_Req supplies an output buffer containing all F commands and their
descriptions.

• No_Data_Avail is given an index in the flight_data_list. It calls Put_Data to
send a message to the FTM_Coprocess, using
flight_data_list[index].coproc_addr, indicating a queued request for flight data
that was not fulfilled.

• Open_Sw_Mbox opens a connection to the Nodeswitch process with the
net$_open call, after checking whether to register as FTM or FTMB. This
allows FTM to communicate with other connected processes in the ETMS. If
the net$_open attempt fails, a second attempt is made. Otherwise, the
registered_prov global variable is set to TRUE.

• Process_Bad_Reg handles the receipt of a bad registration message from the
FTM's data source. If running as FTMB, then the Register_To_Provider routine
is called to retry registration to the master FTM. If running as an FTM, then the
Register_To_Provider routine is called to retry registration to the FDBD, the
reg_failed global variable is incremented, and the conn_start_time global is
reset to the current_time .

• Process_Good_Reg handles the receipt of a registration acceptance from the
FTM's data source. If running as FTMB, the registered_serv global is set to
TRUE, the registration_outstanding global is set to FALSE, and the
no_data_time global is set to the current_time + no_data_timeout.

If running as FTM, the source site of the message is compared to the
current_site_id for validation. If the message is from a different site, the
registration_acceptances ignored global is incremented and the
Register_To_Provider routine is called with a 0 service_count to close any
registration with the unwanted provider. If the sites match, then the class is
validated to ensure the message came from an FDBD. The reg_success global
is incremented, the providers_addr global is set to the source address of the
message, the current_site is set via the net$_inq_get_site_ascii call, the
registered_serv global is set to TRUE, and the no_data_time is set to the
current_time + no_data_timeout.

• Process_Incomplete_Request handles user requests attempted to be handled by
FTM_Coprocess, which was not able to complete due to holes in the database.
This routine increments the global rept_rcvd, checks that the size of the request
buffer is valid, and calls the Parse module routine Fill_In_Flights to request the
missing data from the FDBD.

ETMS System Design Document
Version 5.8

18–30

• Process_Reconfigure handles reconfigure requests in one of two ways: reading
a provided configuration file or resetting the primary and secondary FDBD
registration sites to the provided sites. To determine the type of reconfigure, it
checks the first character. If it is not a $, then it considers the input to be a
filename; otherwise, it reads the site(s) provided and assigns them to
primary_site and secondary_site respectively.

If no secondary_site is provided, it is assigned the same value as primary_site.
For filename reconfigurations, the Misc module routine Read_Adapt_File is
called. If the reconfigure causes the FTM to be changed to an FTMB, or vice
versa, then the net$_close call is used to close the registration to the Nodeswitch
process, and net$_open is called to re-register as the new class.

• Process_Returned_Message handles messages that were attempted to be sent
from FTM, but did not reach their destination, and returned to the FTM. If the
message was intended for a client, Delete_A_Client is called to remove the
client from the client_table.

• Put_Data sends a message to an address_list, using the provided message code
(mcode). It presumes that the address_list and address_count were set before
it was called, and uses the net$_send_message_addr_list call. It also checks if
the sw_handle is nil, and, if so, calls Open_Sw_Mbox.

• Register_To_Provider sends a registration message (with a count of 0 to close
registration and 1 to open registration) to the provided address. If running as
FTMB, then the net$_inq_class_on_site call is made to find an FTM on the local
site with which to register, unless the count is 0, in which case the
net$_connect_to_service_provider call is made. If running as FTM, the
providers_addr is assigned the provided address and the
net$_connect_to_service_provider call is used to send the request. The
service_time is set to the current_time + retry_time . A check is made to
ensure that the destination address site is not net_nil.

• Sho_Req handles requests for the F SHO command, which allows up to five
flight acids to be requested for display. It calls the Display_Flight routine to
write each flight's display into a buffer which is sent to the requestor via the
Put_Data routine.

• Site_Req responds to the F SITE command by creating a buffer containing the
FDB site connections and calling Put_ Data to return this information to the
requestor.

• Stats_Level_0 sends a buffer stating that “This FTM command is not yet
supported...” to the requestor via the Put_Data routine. The requestor's address
is stored in address_list[1] from sw_header.source_address. When a stats
level 0 command is issued to FTM, the Stats_Level_1 routine is called.

NOTE: This procedure is not called, because statistics levels 0 and 1 are currently required to be

equivalent.

ETMS System Design Document
Version 5.8

18–31

• Stats_Level_1 writes statistics about FTM to a buffer to be sent to the requestor
via the Put_Data routine. The requestor's address is stored in address_list[1]
from sw_header.source_address.

• Stats_Level_2 writes statistics about FTM to a buffer to be sent to the requestor
via the Put_Data routine. The requestor's address is stored in address_list[1]
from sw_header.source_address.

• Stats_Level_3 writes statistics about FTM to a buffer to be sent to the requestor
via the Put_Data routine. The requestor's address is stored in address_list[1]
from sw_header.source_address.

• Stats_Level_4 writes statistics about FTM to a buffer to be sent to the requestor
via the Put_Data routine. The requestor's address is stored in address_list[1]
from sw_header.source_address.

• Stats_Level_5 writes statistics about FTM to a buffer to be sent to the requestor
via the Put_Data routine. The requestor's address is stored in address_list[1]
from sw_header.source_address.

• Stats_Level_6 writes statistics about FTM to a buffer to be sent to the requestor
via the Put_Data routine. The requestor's address is stored in address_list[1]
from sw_header.source_address.

• Stats_Level_7 writes statistics about FTM to a buffer to be sent to the requestor
via the Put_Data routine. The requestor's address is stored in address_list[1]
from sw_header.source_address.

• Stats_Level_8 writes statistics about the five most recent reconfigured requests
to a buffer to be sent to the requestor via the Put_Data routine. The requestor's
address is stored in address_list[1] from sw_header.source_address.

• Stats_Level_9 sends a buffer stating that “This FTM command is not yet
supported...” to the requestor via the Put_Data routine. The requestor's address
is stored in address_list[1] from sw_header.source_address.

• Stop_Recovery_On_Previous_Site is given a site_id. It increments the
recoveries_aborted field of the global recovery_record and sets the
current_state of the record to no_recovery_in_progress. The provided site_id
is incorporated into address_list[1], along with the FDBR class name, and the
Put_Data routine is called to send an ftm$_t_recovery_stop message to the
FDBR, which in turn will stop sending recovery messages to the FTM.

• Switch_Sites switches the providers_addr (contained in the FDBD) from the
current_site to the other site; i.e., if currently connected to the primary_site,
this routine switches to the secondary_site, and vice versa. If the primary and
secondary sites are the same, then no site switch is made. The site switch is
performed by calling Register_To_Provider.

ETMS System Design Document
Version 5.8

18–32

Error Conditions and Handling
Error messages, such as network addressing calls and system calls that are unsuccessful, are
written to the trace log. Specific error messages are listed in Table 18-21.

18.1.7 The Misc Module

Purpose
This routine performs various utility functions required by the FTM.

Input
The Misc module receives data to be logged or distributed.

Output
The Misc module produces the following types of output:

• Statistics, sent to the FTM_Stats program

• Map, rte, and raw data

• Data that is sent to disk

Processing
Routines. The Misc module is composed of the following routines:

• Albers converts latitude and longitude into an Alber's projection.

• Arcsin is a function which computes the arcsine of a number.

• Check_Other_Activities is called to perform real-time operations. It calls the
Timer_Process and Check_Sw_Mbox routines (in the Interface module). Then,
if not making a map or a report, it calls Pending_Queue_Pop. Then it calls the
Delete_Expired_Table_Entries routine (in the Flight_Handler module).

• Check_Truncate_File checks the size of the trace log and truncates it if it is too
large.

• Compare_Strings is a function that determines if two strings are equal.

• Display_Error writes the text associated with a status code along with a supplied
text to the trace log. This data is also sent to stats clients, and, if send_log is
set, to a Logger process.

• Display_Net_Error writes the text associated with a toolkit status code along
with a supplied text to the trace log. This data is also sent to stats clients, and, if
send_log is set, to a Logger process.

• Get_New_Ecs obtains new event counts when a node reopen occurs, using the
net$_get_ec_ptr call.

ETMS System Design Document
Version 5.8

18–33

• Initialize performs various setup functions. It calls get_etms_path to get the
name of the path to prepend to all program related objects. Set_Timer is called,
the trace log stream is created (moving the old trace filename to .bak), the
Recovery_Clear_Record routine (in the Recovery module) is called, global
variables are initialized, and the program argument is read - the adapt filename.

The Open_Sw_Mbox routine (in the Interface module) is called, the data in
airstrip.dat is read, and the Misc module routine Read_Adapt_File is called.
Finally, it calls the Ms routine Flight_Table_Create to load the Shared Region
and Pacing_Clear_Table to validate the airport header tables, and
Read_Key_File to obtain NRP information.

• Pending_Queue_Pop takes the top entry off the pending queue and calls a
routine to process it. All requests for data from FTM are placed on a pending
queue. Periodically, this routine is called to process a request for data. If there
is nothing on the queue, the report_in_progress flag is cleared and the routine
returns. Otherwise, the contents of the current mailbox are saved, and the top
entry of the queue is moved into these variables.

The process type is examined. If the process type is to be handled by
FTM_Coprocess, the routine Send_To_Rpt_Process is called. The Interface
module routine Ftms_Process is called otherwise or upon failure to find an
FTM_Coprocess. Pending_Queue_Pop disposes the report_pending_queue to
free up the storage space allocated for the completed entry. The
report_in_progress flag is cleared.

• Pending_Queue_Push examines requests and attempts to send them to the
FTM_Coprocess. If the report_in_progress and making_map flags are both
not set, Pending_Queue_Pop is called before the routine returns.

• Process is the main processing routine in FTM. It is initialized by a call to
Timer_Arm_It. Then it enters an endless loop where it calls
Check_Other_Activities and waits for any event counter to be exceeded. Also,
data and connection timeouts are checked every time through the loop. The
following paragraphs describe the algorithm used to request data from the
FDBD and for switching sites.

 Registration Request Timeout

¡ At initialization, FTM registers for services to the FDB on the primary site.
If the registration accept message is not received within one minute, FTM
sends a new registration request to the primary site. This one minute
timeout/retry takes place until the registration accept message is received
or until three total minutes have passed since the first registration attempt.
If there is still no connection by the 3-minute mark, FTM switches to
attempt registration on the secondary site. These attempts also allow one
minute before re-registering, and three total minutes before switching sites
again.

ETMS System Design Document
Version 5.8

18–34

 No Data Received Timeout

¡ Once the FTM is registered for services, the amount of time since the last
received data message is monitored. If a minute passes without FTM
receiving any data, FTM sends a registration attempt to the FDB on the
primary site. If FTM had been registered for services on the secondary site,
it sends a close registration to that site. At this point, the Registration
Request Timeout logic in the above paragraph is used.

¡ FTM also tracks the number of times that a No Data Received Timeout
occurs on the primary site. If this occurs three times, then the next No Data
Received Timeout will cause FTM to switch to the secondary site. In other
words, a No Data Received Timeout causes FTM to register to the primary
site regardless of the current site, unless three consecutive registrations lead
to No Data Received Timeouts, in which case the secondary site is used.

¡ Within the main processing loop, the timeouts are checked as follows:
if no data within 2 minutes then
 if currently on secondary site then
 switch sites to primary and register
 else
 increment no data count
 if no data count = 3 then
 switch sites to secondary and register
 else
 re-register to primary site
else if no registration in 3 minutes then
 switch sites and register
else if no registration in 1 minute then
 resend registration request

• Read_Key_File reads the remarks keywords file and stores this information for
later use. The filename is /etms5/shared/data/remarks_keywords .

• Reg_With_FTM uses net$_connect_to_service_provider to register to another
FTM as a backup FTM (FTMB). The ftm_reg_address is obtained from an
inquiry for all FTMs on site.

• Send_To_Clients is given a client type (ctype) and a message type (mtype). It
traverses the client_table for all clients matching the ctype , and it builds the
address_list to which the Interface module routine Put_Data is called to send
an mtype message.

• Send_To_Rpt_Process sends a user request to a rept client (FTM_Coprocess)
for processing using Put_Data with message code ftm$_t_report_req. It is given
a character code (R = resend the message, Q = queue) and outputs a boolean
success (0 = success, 1 = no rept client found).

ETMS System Design Document
Version 5.8

18–35

• Set_Timer gets the current time (timer) and adds time_correction to obtain the
value for the variable current_time . If midnight has been crossed, the variable
time_at_midnight is reset. All time in FTM is based upon the timer and
current_time variables. Set_Timer provides a common place to ensure that
both are at the most current values.

• Sincos returns the sine and the cosine for the specified degrees.

• Stats_Send_Data is given a code and some text. It puts both items into a
mailbox message and sends it to all channels with process type Stats. The value
of code is as follows:

01 – ARTCC statistics
02 – pacing airport interval data
03 – map statistics
04 – parsing errors
05 – miscellaneous statistical information

• Timer_Arm_It calculates the number of seconds until end of the next map cycle
interval. The global variable map_creation_time is set. An event counter is set
to go off ten seconds after this time to force a map file creation.

• Timer_Process examines the value of the event counter that went off. If it was
the pacing airport 15-minute event, this routine calls Pacing_Advance_Interval
and Airport_Header_Advance_Interval. But if it was the map time event, this
routine calls Flight_Table_Retrieve and calls Timer_Arm_It. If it was any of the
other event counters that went off, this routine returns. This routine also checks
whether FTM has been waiting for recovery data for over an hour without
receiving any. If so, the recovery is aborted and is restarted if less than 150
buffers were received in the previous recovery.

• Trace_back is called by the FTM Main module upon termination. It creates a
file called ftm_trace_log. Then it invokes the errlog_$traceback command;
the results are written to the file.

• Validate_Class_And_Site validates the providers_addr (FDBD) and the
src_ftm_addr (FTM).

Error Conditions and Handling
The Misc routines write various error messages to the trace log in response to the network
addressing system and system call failures. Specific error messages are listed in Table 18-21.

18.1.8 The Ms Module

Purpose

This module handles the flight database creation, mapping, and unmapping.

ETMS System Design Document
Version 5.8

18–36

Input
Inputs to shared regions include ftm_checkpoint_file_a through ftm_checkpoint_file_g.

Output
Outputs to shared regions include ftm_checkpoint_file_a through ftm_checkpoint_file_g.

Processing
Routines. The Ms module is composed of the following routines

• Flight_Table_Create sets up the seven checkpoint files (ftm_checkpoint_a to
ftm_checkpoint_g). First, this routine attempts to map these files. If there is an
error, any files successfully mapped are unmapped, and the seven files are
deleted along with the shared_region_header file, and all pointers to the shared
region are set to zero. Then, the seven files (now empty) are mapped. If
successful, Flight_Table_Clear_Memory in the Flight Handler module is called.
If not successful, FTM calls the Aegis system call Pfm_$signal and exits.

• Flight_Table_Unmap unmaps each of the seven checkpoint files from memory
and updates the shared_region_header file.

• Clear_it is explained in the Error Conditions.

Error Conditions and Handling
Flight_Table_Create will display a message, unmap the checkpoint files and call the Ms module
routine Clear_it if it gets an error trying to map one of the old checkpoint files or if it gets an
error trying to open the shared_region_header file. If it gets an error trying to create new
checkpoint files, it displays a message, calls the Ms module routine Clear_it, and then calls the
Aegis system call Pfm_$Signal.

Flight_Table_Unmap will display an error if it encounters an error while unmapping any of the
checkpoint files, or while opening the shared_region_header file, or while writing to the
shared_region_header file.

18.1.9 The Pacing Module

Purpose
This routine maintains and processes statistics for the pacing airports, which are the 29 airports
whose traffic sets the pace of all NAS air traffic.

Input
The Pacing module receives data to be written to the pacing tables.

Output
The Pacing module sends reports to a requesting program or user.

ETMS System Design Document
Version 5.8

18–37

Processing
Pacing maintains tables on expected arrivals and departures at the pacing airports. It produces
statistical reports showing the arrival and departure data for these airports. These reports are sent
to the statistical display program (FTM_Stats process). The pacing airport tables are initialized
upon FTM initialization.

Routines. The Pacing module is composed of the following routine:

• Find_Airport_In_Pacing (see below)

• Pacing_Add_Counter checks the value of the pacing event counter (15 minutes).
If 15 minutes have been exceeded, it calls Pacing_Advance_Interval. Then this
routine calls the Pacing module routine Find_Airport_In_Pacing. If the event
counter is not found, the routine returns. The correct time interval (bucket) is
found by walking through the pacing table. Finally, two counters are
incremented. One is for the pacing interval, and the other is for the pacing
interval by aircraft category. There is also a set of counters for arrival and a set
for departure. A boolean variable is passed in to tell this routine which set to
update.

• Pacing_Add_Future_Counter updates counters for flights that have not
occurred. First, it checks the value of the pacing event counter (15 minutes). If
it has been exceeded, it calls Pacing_Advance_Interval. Then this routine calls
the Pacing module routine Find_Airport_In_Pacing. If the event counter is not
found, it returns. The correct time bucket is found by walking through the
pacing table. Finally two counters are incremented. One is for the future pacing
interval, and the other is for the future pacing interval by aircraft category.
There is also a set of counters for arrival and a set for departure. A boolean
variable is passed in to tell this routine which set to update.

• Pacing_Advance_Interval resets the pacing event counter to go off in 22
minutes (15-minute interval plus 7-minute offset). Next, it opens
/traffic/ftm_pace_log and writes the data from the interval that has just
completed. A statistical summary is sent to all Stats channels. Finally, the
intervals are adjusted to eliminate the oldest and to clear the latest.

• Pacing_Clear_Table fills the pacing table from the airport header table, and
initializes all elements other than name to zeroes. Finally this routine sets the
pacing event counter to execute in 15 minutes and calculates the starting time of
each interval.

• Pacing_Report writes to the trace log a report of all the information contained in
the pacing table. This routine is called to satisfy the Pace command.

Error Conditions and Handling
Only the Pacing_Advance_Interval routine contains error handling. It calls Display_Error if
there is an error from any of the following calls used on the ftm_pace_log file:

• Ios_$Create

ETMS System Design Document
Version 5.8

18–38

• Ios_$Inq_Byte_Pos

• Ios_$Seek

18.1.10 The Parse Module

Purpose
This routine processes and validates transaction messages from the FDBD process. Processed
flight data is entered into the FTM database.

Input
The Parse module receives the following transaction data from the FDBD process:

• TZ_Data

• TTM_FTM

• critical

• cancel

• Block_Alt

• position

• time

• route

Output
The Parse module enters flight data into the FTM database. All messages received are sent to all
raw clients.

Processing
The routines in this module parse the transaction messages. The information in these messages
is used to update or create entries in the FTM database.

Routines. The Parse module is composed of the following routines:

• Bad_Field is given an error code, int_value , num_msg, and place. The global
parse_errors is incremented. A case statment determines the error code, and a
corresponding text message is encoded into a local buffer describing the error,
using the other provided parameters.

• Compute_Ete is given a flight_ptr to the active flight table, an arrival_ptr and
a depart_ptr. If arrival_ptr = 0, the Flight_Handler module
Time_Used_Get_Arrival routine is called to determine which of the arrival times
is being used. If depart_ptr = 0, the Flight_Handler module

ETMS System Design Document
Version 5.8

18–39

Time_Used_Get_Departure routine is called to determine which of the
departure times is being used.

If either of these times is still undetermined, the routine is aborted. Otherwise,
the arrival_time and depart_time are set to the determined times, respectively.
The estimated time enroute (ete) in minutes is determined by subtracting the
depart_time from the arrival_time and dividing by 60. This value is assigned
to the ete field in the database.

• Convert_To_Hhmmss takes a total seconds value and converts it into a text
string, represented by hh:mm:ss (hours:minutes:seconds).

• Create_Log_File checks to see if the orig_filter is set. If so, ios_$create is used
to create an orig file under the name orig.MMddhhmmss, by first using
cal_$decode_time and vfmt_$encode10. The log_reopen_time is reset to be on
the hour for the next orig file. Also, this routine resets all hourly buffer stats.

• Data_Log takes a packed transaction data buffer and size, checks if the
orig_filter is on, and, if so, writes the buffer into the orig file.

• Fill_In_Flights is given a boolean queue, num_flights, and a flight_list – a
record structure used to pass flight hole-fill requests to the FDBR. If queue is
FALSE, the routine is aborted. (This is temporary until it is decided that
automated hole fills may be enabled.) If a recovery is in progess, or has been
requested, the routine is aborted. Address_list[1] is set to the FDBR address.

If queue is TRUE, it means that the hole-fill request was sent from a list request
which found a hole in the database, and so flight_data.coproc_addr is set to
sw_header.source_address and flight_data.seq_num is set to
coproc_buffer.seq_num. Otherwise flight_data.coproc_addr is set to
null_address and flight_data.seq_num is set to 0.

Flight_data.id_flight is then set to flight_list, flight_data.num is set to
num_flights, flight_data.time is set to current_time , and
num_flights_request is set to num_flights_request + num_flights. The
Interface module Put_Data routine is called to send the data request to the
FDBR using the ftm$_t_send_data message type.

• Find_Airport attempts to return the latitude and longitude of a specified airport.
First it checks to see if the airport code is prefixed with a K, which would mean
that it is a Contiguous United States (CONUS) flight. If it is, it is removed.
Then the airport table is searched. If the code is not found, null values are
returned.

• Get_Center_ID is a function which translates a given character_code into its
corresponding center_id using a case statement.

• Increment_Source_Type_Stats increments the number of messages received for
the given src_type , which represents the source of a message (usually an
ARTCC), in the src_type_stats array.

ETMS System Design Document
Version 5.8

18–40

• Insert_Route calculates the size of the route field, saves the route counters, calls
the Flight_Handler module routines Flight_Table_Retrieve and
Flight_Table_Insert, and then restores route counters.

• Parse_Block_Alt parses a block_alt transaction message and then uses the
Flight_Handler module routines to perform the following. It increments the
global block_alt_count, calls Increment_Source_Type_Stats routine, validates
the acid, and calls Get_Flight_List with the acid. If flights_in_list is > 1, then
Find_Flight_On_Index is called to try to match the message to an existing flight
in the database. If no match is found, an attempt is made to match the flight
with the date bit (17th lsb) flipped (local procedure Check_For_Date_Bit). If
still no match, then Create_Flight_Entry is called to create a new flight. If a
match is found, then block_alt_match is incremented. The database is updated
with the message data.

• Parse_Cancel parses a cancel transaction message and then uses the
Flight_Handler module routines to process the following. It increments the
global cancel_count, calls Increment_Source_Type_Stats, validates the acid,
and calls Get_Flight_List with the acid. If flights_in_list is > 1 then
Find_Flight_On_Index is called to try to match the message to an existing flight
in the database. If no match is found, then an attempt is made to match the
flight with the date bit (17th lsb) flipped (local procedure Check_For_Date_Bit).
If still no match, then Create_Flight_Entry is called to create a new flight. If a
match is found, then cancel_match is incremented. The database is updated
with the message data.

• Parse_Critical parses a critical transaction message and then uses the
Flight_Handler module routines to process the following. It increments the
global critical_count, calls Increment_Source_Type_Stats, validates the acid,
and calls Get_Flight_List with the acid.

If flights_in_list is > 1 then Find_Flight_On_Index is called to try to match the
message to an existing flight in the database. If no match is found, then an
attempt is made to match the flight with the date bit (17th lsb) flipped (local
procedure Check_For_Date_Bit). If still no match, then Create_Flight_Entry is
called to create a new flight. If a match is found, then critical_match is
incremented. The database is updated with the message data.

• Parse_Position parses a position transaction message and then uses the
Flight_Handler module routines to process the following. It increments the
global position_count, calls Increment_Source_Type_Stats, validates the acid,
and calls Get_Flight_List with the acid.

If flights_in_list is > 1 then Find_Flight_On_Index is called to try to match the
message to an existing flight in the database. If no match is found, then an
attempt is made to match the flight with the date bit (17th lsb) flipped (local
procedure Check_For_Date_Bit). If still no match, then Create_Flight_Entry is
called to create a new flight. If a match is found, then position_match is
incremented. The database is updated with the message data.

ETMS System Design Document
Version 5.8

18–41

• Parse_Route parses a route transaction message and then uses the
Flight_Handler module routines to process the following. It increments the
global route_count, calls Increment_Source_Type_Stats, validates the acid, and
calls Get_Flight_List with the acid.

If flights_in_list is > 1 then Find_Flight_On_Index is called to try to match the
message to an existing flight in the database. If still no match, then the orphan
list is checked by calling Find_Flight_On_Index with the orphan_index of -2.
(Orphans are created when FTM receives a raw message which it cannot match
in the database.) If no match is found, then an attempt is made to match the
flight with the date bit (17th lsb) flipped (local procedure
Check_For_Date_Bit). If still no match, then Create_Flight_Entry is called to
create a new flight. If a match is found, then route_match is incremented. The
database is updated with the message data.

• Parse_Time parses a time transaction message and then uses the Flight_Handler
module routines to process the following. It increments the global time_count,
calls Increment_Source_Type_Stats, validates the acid, and calls
Get_Flight_List with the acid.

If flights_in_list is > 1 then Find_Flight_On_Index is called to try to match the
message to an existing flight in the database. If no match is found, then an
attempt is made to match the flight with the date bit (17th lsb) flipped (local
procedure Check_For_Date_Bit). If still no match, Create_Flight_Entry is
called to create a new flight. If a match is found, then time_match is
incremented. The database is updated with the message data.

• Parse_TTM_FTM parses a ttm_ftm transaction message and then uses the
Flight_Handler module routines to process the following. It increments the
global ttm_ftm_count, calls Increment_Source_Type_Stats, validates the acid,
and calls Get_Flight_List with the acid.

If flights_in_list is > 1 then Find_Flight_On_Index is called to try to match the
message to an existing flight in the database. If no match is found, then an
attempt is made to match the flight with the date bit (17th lsb) flipped (local
procedure Check_For_Date_Bit). If still no match, then Create_Flight_Entry is
called to create a new flight. If a match is found, then ttm_ftm_match is
incremented. The database is updated with the message data.

• Parse_TZ_Data parses a tz_data transaction message and then uses the
Flight_Handler module routines to process the following. It increments the
global tz_data_count, calls Increment_Source_Type_Stats, validates the acid,
and calls Get_Flight_List with the acid.

If flights_in_list is > 1 then Find_Flight_On_Index is called to try to match the
message to an existing flight in the database. If still no match, then the orphan
list is checked by calling Find_Flight_On_Index with the orphan_index of -2.
(Orphans are created when FTM receives a raw message which it cannot match
in the database.)

ETMS System Design Document
Version 5.8

18–42

If no match is found, then an attempt is made to match the flight with the date
bit (17th lsb) flipped (local procedure Check_For_Date_Bit). If still no match,
then Create_Flight_Entry is called to create a new flight. If a match is found,
then tz_data_match is incremented. The database is updated with the message
data.

• Process_Data takes packed transaction messages from the FDBD and validates
that the sw_header.source_address.site_id equals current_site_id and then
uses the Recovery module routines to process. If the sending class is FDBR
(indicating a recovery message), and the site_id does not equal the
current_site_id, then Stop_Recovery_On_Previous_Site is called to abort the
recovery from a different source site. The msg_stats_total record is updated, the
Data_Log routine is called, and then a while loop is used to get each message,
unpack it using UnpackforFTM, and call the approporiate parsing routine. If
there was recovery data found, then the recovery_record is updated
accordingly.

• Process_Data_Unavailable handles the situation where a hole fill was
requested, but the data cannot be found. The coproc_buffer entry is cleared,
and the Interface module routine Put_Data is called to notify the requestor that
the data is unavailable, using the message type ftm$_t_unavail_flts.

• Set_Times_Used takes a flight_ptr and uses a hierarchy to determine the arrival
and departure times to be used for the flight, calling the Flight_Handler module
routines Time_Used_Get_Depart and Time_Used_Get_Arrival, and the Parse
module Compute_Ete routine.The hierarchy is actual, controlled, estimated,
proposed, and scheduled.

Error Conditions and Handling
Error conditions resulting from system call failures are written to a trace log.

18.1.11 The Raw Module

Purpose
The Raw module parses raw TZs and DZs and incorporates them into the FTM database.

Input
Raw TZ and DZ data buffers are passed to this module from the Interface module.

Output
The FTM database is modified according to the data received. Raw data files are created hourly
when raw data is being received.

ETMS System Design Document
Version 5.8

18–43

Processing
Routines. The Raw module is composed of the following routines:

• Encode_Time_In_Seconds receives text representing the date and time, and
converts it into total seconds.

• Parse_Field receives a buffer txt with its size text_size , a pointer ptr to the text,
and a field_id. Parse_Field returns a word, word_size and a boolean error. The
field_id is determined in a case statement, and the corresponding field is parsed.
The result is passed back in word and word_size , and error is returned as TRUE
if one of the parsing rules failed.

• Process_Raw_DZ receives a raw DZ and a timestamp, calls the Parse module
Parse_Field routine for each word separated by spaces and if no errors are
found, it calls the following Flight_Handler module routines. The
Increment_Source_Type_Stats routine attempts to match the data into an
existing flight by calling the Get_Flight_List and Find_Flight_Acid routines. If
a match is found, the flight in the database is updated with the new information.
Otherwise, an orphan flight is created with a flight_index of -2.

• Process_Raw_TZ receives a raw TZ and a timestamp, calls Parse_Field for each
word separated by spaces, and, if no errors are found, calls
Increment_Source_Type_Stats, and attempts to match the data into an existing
flight by calling Get_Flight_List and Find_Flight_Acid. If a match is found, the
flight in the database is updated with the new information. Otherwise, an
orphan flight is created with a flight_index of -2.

• Process_Raw_Message receives a buffer of one or more raw messages. The
buffer is moved into a local buffer (bufferl), and the first 8 bytes of the buffer
are validated as the password. If the password is not valid, the routine is
aborted. Otherwise, the global raw_buff_rcvd is incremented.

The buffer is repeatedly read one message at a time, using the line feed character
as the delimiter. Each buffer has its 4-byte timestamp stripped and stored into a
local variable timestamp. The 5th byte is taken as the ARTCC identifier. Then
the two bytes representing the message type are checked.

If TZ, then Parse_Raw_TZ is called with the message and timestamp (the
center_char is global to the Raw module). If DZ, then Parse_Raw_DZ is
called with the message and timestamp. Otherwise, the global
invalid_raw_count is incremented. This repeat-until loop continues until there
are no more messages found. All messages are also written to the hourly raw
data archive file.

Error Conditions and Handling
In response to system call failures, error messages are written to the trace log.

ETMS System Design Document
Version 5.8

18–44

18.1.12 The Recovery Module

Purpose
This module maintains the recovery state, updates recovery history information, sends recovery
requests to the FDBR process, and handles a recovery message protocol with the FDBR.

Input
The global record recovery_record. Its structure is described in Table 18-3.

Table 18–3. recovery_record Data Structure

recovery_history_t
Library Name: etms_lib Purpose:

Contain recovery information

Element Name: ftm_constants.ins

Data Item Definition Unit/Format Range Var. Type/Bits
number_recoveries Number of recoveries completed

since FTM started.
integer32

number_recovery_
failures

Number of recovery attempts failed. integer32

number_recovery_
attempts

Number of recovery attempts. integer32

ETMS System Design Document
Version 5.8

18–45

Table 18–3. recovery_record Data Structure (continued)

recovery_history_t
Library Name: etms_lib Purpose:

Contain recovery information

Element Name: ftm_constants.ins

Data Item Definition Unit/Format Range Var. Type/Bits
recoveries _aborted Number of recoveries aborted. integer32

total_recovery_time Total time FTM spent in recovery
mode.

integer32

total_buffers_rcvd Total recovery buffers received. integer32

total_msgs_rcvd Total recovery messages received. integer32

total_bytes_rcvd Total recovery bytes received. integer32

current_buffers_rcvd Number of buffers received during
the current recovery.

integer32

current_msgs_rcvd Number of messages received
during the current recovery.

integer32

current_bytes_rcvd Number of bytes received during the
current recovery.

integer32

previous _buffers_rcvd Number of buffers received in
previous completed recovery

integer32

previous _msgs_rcvd Number of messages received in
previous completed recovery

integer32

previous _bytes_rcvd Number of bytes received in
previous completed recovery

integer32

previous _start Start time of the previous completed
recovery.

integer32

previous _stop Stop time of the previous completed
recovery.

integer32

previous _time_range Interval of time recovery requested
for previous recovery.

array[1.2] of
integer32

previous _state Recovery state in previous recovery
attempt. **

recovery_state_t

current_state Recovery state in current recovery
attempt. **

recovery_state_t

current_start_time Start time of current recovery
session.

integer32

current_time_range Time interval of current recovery
request.

array[1.2] of
integer32

last_buffer_rcvd Time of last recovery buffer
received.

integer32

current_recovery_
reason

Reason for current recovery attempt.
**

0...13 integer16

previous _recovery_
reason

Reason for previous recovery
attempt. **

0...13 integer16

ETMS System Design Document
Version 5.8

18–46

**recovery_state_t = no_recovery_in_progress,
recovery_should_be_started,
recovery_req_sent,
recovery_accepted_by_fdb
recovery_queued_by_fdb,
recovery_in_progress,
las_recovery_aborted
recovery_timed_out_restarting,
recovery_timed_out_not_restarting

recovery resons: 0 none
1 database not found or error mapping table a
2 error mapping table b
3 error mapping table c
4 error mapping table d
5 error mapping table e
6 error mapping table f
7 error mapping table g
8 start count <> stop count
9 error reading shared region header
10 shared region over an hour old
11 last FTM shutdown over 12 hours old
12 last FTM shutdown over 15 minutes old
13 no data received for at least 15 minutes

Output
The recovery_record is modified as needed by the Recovery routines.

Processing
The following decribes the different types of recoveries:

 Full Recovery (Database Wipeout). FTM requests a full recovery of NAS data when it detects
that the database is invalid. In this case, FTM clears its current database and populates a new one
with the incoming recovery data received from FDBR, as well as the normal data from FDBD.
The time frame of this recovery will be [BEGINNING, Current Time]. The FTM determines that
its database is invalid during FTM startup, while reading the shared region under the following
conditions:

• If the database is over 12 hours old (retention period)

• An error occurs while mapping in one of the files making up the shared region

• The shared region header file indicates that the number of FTM starts does not
match the number of FTM stops since the region was created

• The database files do not exist.

ETMS System Design Document
Version 5.8

18–47

Finite Recovery. If a 15-minute period goes by without FTM receiving data from the FDBD,
the FTM requests a finite recovery with a time frame of [Last Time Data Received, Current
Time]. This request is made upon receiving a registration acceptance message from FDBD. A
finite recovery request is also made upon FTM startup if it is determined that it has been over 15
minutes since the previous FTM shut down. In this case, the time frame is [Time of Previous
FTM Shut Down, Current Time]. Another scenario causing a finite recovery is if FTM starts and
does not receive data for over 15 minutes, a recovery will be initiated upon receipt of the next
FDBD registration acceptance message. This recovery time frame is [FTM Start Time, Current
Time].

Automated Interim Recovery (currently disabled). FTM processing of TZ, block_alt, time (AZ,
DZ, EDCT, 5 setback), and position (TO, TA) type messages checks a route_flag sent from
FDBD as part of the message, which indicates whether route data is available on the flight. If
this flag is set and FTM does not have the route data, an interim recovery request (hole-fill) will
be sent to the FDBR. Since FTM can pack up to 100 of these requests in one buffer, it sends one
package of requests per message buffer received (as long as there is at least one flight in need of
route data). If more than 100 flights are found needing route data in a single message buffer,
FTM sends extra request buffers accordingly. The resulting TTM messages from FDBR provide
FTM with the missing route data.

List Request Interim Recovery. A list request interim recovery occurs while FTM or
FTM_Coprocessor is processing a list request and determines that flight data is missing. The
FTM then sends FDBR a request for all data on the flight in question. Once the resulting
TTM_FTM message is received containing the flight's information, the list request is completed.

Other FTM recovery notes: After one hour of successive unsuccessful recovery attempts, it
sends an “ftm$_recovery_stop” message to the FDBR, which then aborts the recovery. If FTM
switches registration sites during a recovery, it sends an “ftm$_recovery_stop” message to the
FDBR, which then aborts the recovery. During FTM startup, if the database is over one hour old,
the active table is cleared.

Routines. The Recovery module is composed of the following routines. Unless otherwise
noted, the variables referenced below are fields of the global record recovery_record:

• Recovery_Clear_Record initializes the fields of the recovery record, specifically
that the current_state is no_recovery_in_progress and that no recoveries have
been attempted, completed, etc.

• Recovery_Encode_Report receives a buffer and buf_ptr and writes the current
recovery information into the buffer starting at buf_ptr. All pertinent
information is provided, i.e., previous recovery information is included only if
there was a previous recovery completed. This routine is called from the
Interface module routine Stats_Level_4.

ETMS System Design Document
Version 5.8

18–48

• Recovery_Needed receives a start time and a recovery reason. It sets the
current_recovery_reason in the recovery_record to the given reason. An
entry is made into the trace log stating the reason. If the current_state is
recovery_should_be_started then current_time_range[1] is updated to the
given start time (unless it is less than the given start time). The recovery_state
is set to recovery_should_be_started. If the recovery_state is not
no_recovery_in_progress then the routine is aborted. The current_start_time
is set to the current time.

• Recovery_Parse_Messages checks the global sw_header.message_type and
determines if it matches one of the following recovery message types:

¡ For ftm$_t_full_recovery, a message is written into the trace log stating that
ftm should never receive this message.

¡ For ftm$_t_ack_ready_receive, a message is written into the trace log
stating that ftm should never receive this message.

¡ For ftm$_t_ack_request, an ftm$_t_ack_ready_receive message is sent to
the sw_header.source_address (presumably FDBR), indicating that FTM is
ready to receive the recovery data for the requested time frame.

¡ For ftm$_t_recovery_resend, a message is written into the trace log stating
that ftm should never receive this message.

¡ For ftm$_t_recovery_status, a case statement is used to determine the
recovery status, as follows:
− A status of recovery_stat_ok is ignored.

− For recovery_stat_complete status, a subroutine recovery_complete is
called to update the recovery_record for a completed recovery.

− For recovery_stat_queued status, a subroutine recovery_queued is called
to update the recovery_record for a recovery queued by the FDBR.

− For recovery_stat_initiated status, a subroutine recovery_init is called to
update the recovery_record for a recovery started by FDBR.

− For recovery_stat_bad_request, recovery_stat_spanfault,
recovery_stat_fatal1, recovery_stat_fatal2, a subroutine recovery_error
is called to handle the respective error in the recovery request.

• Recovery_Start is given a start time and a recovery reason. The reason is
checked against the following recovery_reason boundaries (0...13):

¡ If the current_state indicates that a recovery has been requested and has yet
to be processed, then the routine is aborted. Only one recovery may be
handled at a time. The current_reason is set to the given reason.

ETMS System Design Document
Version 5.8

18–49

¡ If an ongoing recovery has been unsuccessfully completed for an hour
period, then the recovery is aborted. The current_start_time and
current_time_range[1] are set to the current_time global. The current_state
is set to recovery_req_sent. The net$_send_message_addr_list call is used
to send an ftm$_t_full_recovery message to the FDBR. The
number_recovery_attempts field is incremented, and a status message is sent
to the trace log and to stats clients.

Error Conditions and Handling
In response to system call failures, recovery message information and error messages are written
to the trace log. Specific error messages are listed in Table 18-21.

18.1.13 The Report Module

Purpose
Generate reports in response to list requests for specific flight data, write them into a file, and
send the file to the requestor's address. This module is shared with the FTM_Coprocess process.
If there is no FTM-Coproc, FTM handles the list request; otherwise, all requests are forwarded to
FTM-Coproc. For this reason, the report.ins include file is used to hold the routine declarations
for the Report module. See Table 18-4.

Input
Inputs are the specific flight data requests. See Table 18-2.

Output
Response files are forwarded to the requestor of the information. The report_t structure is used
for most of these reports.

Table 18–4. Report_t Data Structure

report_t
Library Name: etms_lib Purpose:

Contain user request report information.

Element Name: ftm_user_report.ins

Data Item Definition Unit/Format Range Var. Type/Bits
sequence List request sequence number char 4

command User command requested char10

size Size of data contained in report integer16

data The report char4000

ETMS System Design Document
Version 5.8

18–50

Routines. The Report module is composed of the following routines:

• Adrfillit_Req creates a file under the name /sio_files/ftmtdb.mmddhhmmss,
and expands the ASD/ADR report with flight data.

• Airport_Header_Get_List is given an airport, a start_time , stop_time , and
boolean arrival and returns a flight count representing the number of flights
arriving (if arrival is TRUE) or departing from the airport within the interval
provided.

• Airportheader_Req handles the AIRPORTHEADER command. It writes to
the output buffer the following information: the number of airports, when the
first interval started, when the last interval starts, and the c urrent time.

• Arr_Req handles the ARR command. This routine traverses the entire database
and lists all arrivals at a specified airport to an output file named
ftmout.<timestamp>. The name of the file is added to the output buffer. This
is a time consuming function that is useful for diagnostic purposes.

• Arrt_Req handles the ARRT command. This routine writes the arrivals for a
specified airport to an output file named ftmout.<time stamp>. The name of
the file is added to the output buffer. It uses the airport tables and time
intervals. It is not time consuming.

• Compare_Bytes compares the bytes of two given structures.

• Create_Output_File creates a report file under the name
/sio_files/ftmout.mmddhhmmss.

• Dep_Req handles the DEP command. This routine traverses the entire database
and lists all departures at a specified airport to an output file named
ftmout.<time stamp>. The name of the file is added to the output buffer. This
is a time consuming function that is useful for diagnostic purposes.

• Dept_Req handles the DEPT command. This routine writes the departures for a
specified airport to an output file named /sio_files/ftmout.<time stamp>. The
name of the file is added to the output buffer. This routine uses the airport
tables and time intervals. It is not time consuming.

• Display_Rpt_Error writes error messages to stdout during report generation.

• Dumpactive_Req handles the DUMPACTIVE command. This routine dumps
the flight records for all flights in the active table into a file called active.<time
stamp>. The file name is added to the output buffer.

• Find_Airport_In_Pacing returns the slot in the table of airport codes that
matches the code provided. If the code provided begins with a K which
symbolizes international flights, the K is removed before a search is made.

• Find_Flight_On_Index_Rpt takes an aircraft identifier (acid) and a
flight_index, calls Hash_Acid, and traverses the linked list looking for a match

ETMS System Design Document
Version 5.8

18–51

for a flight that has not yet landed. If no match is found, then the flight_ptr is
returned as net_nil, otherwise flight_ptr points to the matching entry.

• Flights_Req handles the FLIGHTS command. This routine traverses the entire
database and lists all flights whose acids begin with a specified three letters.
For example if TWA is specified, then all flights for TWA will be written to the
output file named ftmout.<time stamp>. Then, the file name is added to the
output buffer. This is a time consuming routine that is useful for diagnostic
purposes.

• Get_Word reads a buffer at a given starting point, using the space character as a
delimiter, and returns the first word found and the word_size .

• Hash_Acid is a function which hashes an acid to obtain an index into the flight
table.

• Lifp_Req creates a file under the name /sio_files/ftmlifp.mmddhhmmss and
writes to it the legs of the provided flight in rbuffer.data.

• List_Req handles the ARRIVALS, BOTH, and DEPARTURES commands.
This routine writes the data to an output file named airport.<time stamp> which
contains the flight records for a specified set of airports and a specified time
interval. The routine requires a command for up to ten airports, a start_time ,
and a stop_time . The name of the file is added to the output buffer.

• Lower_Case takes a string and converts it to all lower case.

• Move_Bytes takes an input buffer and size and copies it to an output buffer.

• Output_Flight takes a flight_ptr and a stream_id. It copies the data from
flight_array1 and flight_array2, pointed to by flight_ptr, into a local variable
out_rec. This flight table structure is written into the given stream.

• Tdbfillit_Req handles the TDBFILLIT command. This routine is given a file
name. It creates a new file ftmtdb.<time stamp>, which will contain the control
information found in the first file combined with the flight data from FTM
database. When complete, both file names are sent to the requesting process.

• Validate_Req handles the VALIDATE command. This is a diagnostic routine.
It should not be used on an operational system, since it causes a tremendous
amount of paging, which can seriously impact system efficiency. It creates its
own bitmap and traverses all the in use tables. For each entry, it validates the
route information and sets the bit in its bitmap. When complete, it compares the
bitmap it made with the database bitmap and writes a report on the differences,
if any, to the output buffer.

Error Conditions and Handling
Display_Rpt_Error writes error messages to the output window.

ETMS System Design Document
Version 5.8

18–52

18.2 The FTM_Coprocess Process

Purpose
The purpose of this process is to handle the report requests for the Flight Table Manager (FTM)
function. If this process is not running, the FTM process will respond to these requests.

The FTM_Coproc registers to an FTM on its own site as a report client. Once registered, it is
then forwarded all flight database queries assigned to the FTM. The query response is returned to
FTM, which then forwards it to the original requestor.

Execution Control
The FTM_Coprocess is normally started by the utility Nodescan whenever Nodescan detects that
an FTM_Coprocess is not running.

Input
Ftm_Coprocess requires no mandatory parameters. The optional parameter -path <etms_path>
may be supplied. In addition, it receives ETMS messages containing commands and arguments.

Output
The output is report files responding to user requests. See Table 18-4.

Processing
Upon startup, FTM_Coprocess loads in the flight database and registers to the FTM with the
client type rept. Next, it executes the Process routine, which contains an endless loop. Inside
this loop the mailbox is read, and the message is examined. First, the return address is placed in
the output buffer. The command is extracted and a routine is called to process it. Usually these
subroutines write data to a file in the /sio_files directory and add the file name to the output
buffer. All these file names end with a time stamp, which is made up of the month, day, hour,
minute, and seconds (mmddhhmmss). The Process routine adds a linefeed and a message
stating the number of seconds it took to process the request. Finally, the output buffer is written
to the mailbox.

The modules making up FTM_Coprocess are Report, shared by the FTM, FTM_Coproc, and
FTM_Coproc_Main.

FTM_Coproc responds to Net.Mail statistics levels S0 through S6, where S0 and S1 requests
return the same information. The S0 and S1 statistics provide overall request and message
counts. S2 statistics display currently queued request jobs. S3 statistics provide detailed
information about a specified queued job. S4 statistics list the most recently completed requests.
S5 statistics provide detailed information about a specified completed request.

ETMS System Design Document
Version 5.8

18–53

Error Conditions and Handling
Fatal errors are handled using the Aegis Pfm_$Cleanup system call. When such an error occurs,
the cleanup handler calls the Error_$Print_Name, the Flight_Table_Unmap routine (Ms
module), and the Pfm_$Rls_Cleanup.

Flight_Table_Unmap calls Display_Error (Misc module) if it has any trouble unmapping any of
the checkpoint files.

Flight_Table_Create calls Display_Error (Misc module), Flight_Table_Unmap and
Pfm_$Signal if it cannot map any of the checkpoint files.

Process sends back a message if it receives an invalid command. If this routine gets an error
writing to the mailbox, it calls Error_$Print and Pfm_$Signal, which terminates the process.

18.3 FTM Source Code Organization
Flight Table Manager is built by a build ftm command to DSEE. For the sake of example, the
following shell script is provided that performs the same function.

von
abtsev – m
rdym – on
pas ftm_airport_table -opt 2 -dbs -cpu mathlib_sr10 –b ftm_airport_table.mathlib_sr10
pas ftm_extract -opt2 -dbs -cps mathlib_sr10 -b ftm_extract.mathlib_sr10
pas ftm_flight_handler -opt 2 -dbs -cpu mathlib_sr10 -b ftm_flight_handler.mathlib_sr10
pas ftm_interface -opt 2 -dbs -cpu mathlib_sr10 -b ftm_interface.mathlib_sr10
pas ftm_main -opt 2 -dbs -cpu mathlib_sr10 -b ftm_main.mathlib_sr10
pas ftm_misc -opt 2 -dbs -cpu mathlib_sr10 -b ftm_misc.mathlib_sr10
pas ftm_ms -opt 2 -dsb -cpu mathlib_sr10 -b ftm_ms.mathlib_sr10
pas ftm_pacing -opt 2 -dbs -cpu mathlib_sr10 -b ftm_pacing.mathlib_sr10
pas ftm_parse -opt 2 -dbs -cpu mathlib_sr10 -b ftm_parse.mathlib_sr10
pas ftm_raw -opt 2 -dbs -cpu mathlib_sr10 -b ftm_raw.mathlib_sr10
pas ftm_recovery -opt 2 -dbs -cpu mathlib_sr10 -b ftm_recovery.mathlib_sr10
pas ftm_report -opt 2 -dbs -cpu mathlib_sr10 -b ftm_report.mathlib_sr10
pas ftm_coproc -opt 2 -dbs -cpu mathlib_sr10 -b ftm_coproc.mathlib_sr10
pas ftm_coproc_main -opt 2 -dbs -cpu mathlib_sr10 -b ftm_coproc_main.mathlib_sr10
ftn ftm_great_circle -opt 2 -dbs -cpu mathlib_sr10 -b ftm_great_circle.mathlib.sr_10

Once the files have been compiled, the following command must be issued in order to bind the
files together into two executable programs:

von
rdym – on
bind <<!
ftm_airport_table.mathlib_sr10.bin
ftm_extract.mathlib_sr10.bin
ftm_flight_handler.mathlib_sr10.bin
ftm_interface.mathlib_sr10
fim_main.mathlib_sr10.bin
ftm_misc.mathlib_sr10.bin
ftm_ms.mathlib_sr10.bin

ETMS System Design Document
Version 5.8

18–54

ftm_pacing.mathlib_sr10.bin
ftm_parse.mathlib_sr10.bin
ftm_raw.mathlib_sr10.bin
ftm_recovery.mathlib_sr10.bin
ftm_report.mathlib_sr10.bin
ftm_great_circle.mathlib_sr10.bin
-b ftm
!
bind <<!
ftm_coproc.mathlib_sr10.bin
ftm_coproc_main.mathlib_sr10.bin
ftm_report.mathlib_sr10.bin
-b ftm_coproc
!

18.4 FTM Data Structures
The FTM uses a variety of data structures. This section discusses the data structures used in the
FTM database and three others used throughout the function.

18.4.1 FTM Database Data Structures
Tables 18-5 through 18-18 contain information on the format of the keys to the Shared Region
files. These files contain all the information about active and pending flights for the FTM.

Flight_array1 is the key to ftm_checkpoint_file_a and is defined by the following:

Flight_array1 is of type flight_array1_ptr.

This type is defined as ^flight_array1_t. Flight_array1_t is an array of flight_table_entry1_t.

ETMS System Design Document
Version 5.8

18–55

Table 18–5. flight_array1_t Data Structure

flight_array1_t
Library Name: etms_lib Purpose:

Array of records of flight_table_entry_t

Element Name: flight_table.ins

Data Item Definition Unit/Format Range Var. Type/Bits
flight_array1_t Array of flight_table_entry1_t. total_flight_records =

125,000
1…total_flight_

records
array

Table 18–6. flight_table_entry1_t Data Structure

flight_table_entry1_t
Library Name: etms_lib Purpose:

To contain the most often used portion of the flight record.

Element Name: flight_table.ins

Data Item Definition Unit/Format Range Var. Type/Bits
flight_index Flight index integer32

deletion_time Time to remove flight from database Whole seconds integer32

next_one Position in linked list integer32

acid Aircraft identifier char7

dep_air Departure airport char5

arr_air Arrival airport char5

active Flight’s active status See 18.4.1.1 char

update_type Type of last message received on
flight

See 18.4.1.2 char

filler Reserved char

18.4.1.1 Active Flights
The active field in flight_table_entry1_t represents the current state of the aircraft and can have
the values shown in the text that follows.

 Value for Flights That Have Not Yet Flown

P – A flight that has received an FZ, FS, or AF message, and is waiting for a
position report.

ETMS System Design Document
Version 5.8

18–56

 Values for Flights in the Air

A - An active flight that has received one of the following messages within the last
seven minutes:

TZ, DZ, TO, TA, or FZ

E - An expired flight (ghost) whose last position update is more than seven minutes
old.

 Values for Flights That Have Landed

B - A deactivated flight due to receipt of an SI message (substitution or
cancellation).

C - A deactivated flight due to receipt of a Control Cancel message.

1 - A deactivated flight due to 1) receipt of an AZ message, or 2) receipt of either a
TTM_FTM or CRITICAL message with a flight status indicating that the flight
has completed.

2 - A deactivated flight due to receipt of an RZ message.

3 - An international flight that is deactivated because of meeting one of the
following conditions:

• The flight is adjacent to its destination airport.

• The flight distance traveled is greater than the distance to its destination airport.

• The flight is moving away from the airport, and the ghost to waypoint flag is
false.

4 - A flight deactivated because it has been in a holding pattern for more than one
hour.

5 - A flight deactivated because it is adjacent to its destination airport while moving
away from the airport.

6 - A ghosting flight deactivated because of one of the following two reasons:

• It had a speed of less than 10 knots.

• It had no valid waypoint to ghost toward and its destination is unknown.

7 - A flight deactivated because its position update time is unknown.

8 - A flight deactivated due to receipt of an RY message.

9 - A flight deactivated due to receipt of an RS message.

o - A deactivated flight due to an adjacency to airport test. This occurs when the
distance traveled is greater than the distance to the destination, as computed for
the previous map file, and the aircraft is moving away from the airport.

ETMS System Design Document
Version 5.8

18–57

d - A flight deactivated because its computed distance travelled places it within 5
nautical miles of the destination ariport.

g - A flight deactivated due to meeting the following conditions:

• It is adjacent to its destination airport OR its distance traveled is greater than the
distance to its destination airport.

• It is moving away from the airport and the ghost to the waypoint flag is true.

 Value for Flights Flagged for Removal from the FTM Database

• X - A flight that is no longer active. This flight has been in the database for its
life period or has been cancelled. The flight is due to be physically removed
from the database during the next purge cycle.

18.4.1.2 Update Type
The Update Type field can have one of the following values:

• A = Last update was an AF message

• B = Last update was a 5-MINUTE SETBACK message

• C = Last update was an RY message

• D = Last update was a DZ message

• E = Last update was an EDCT message

• F = Last update was an FZ message

• G = Last update was a RAW TZ

• H = Last update was a CONTROL CANCEL message

• I = Last update was a CRITICAL message

• J = Last update was a RAW DZ

• K = Last update was a BLOCK ALTITUDE message

• L = Last update was an AZ message

• M = Last update was a TTM_FTM message

• = Last update was a TO message

• R = Last update was an RS message

• S = Last update was an FS message

• T = Last update was a TZ message

• U = Last update was a UZ message

• W = Last update was a TA message

• X = Last update was an SI CANCEL message

ETMS System Design Document
Version 5.8

18–58

• Y = Last update was an FY message

• Z = Last update was an RZ message

Flight_array2 is the key to ftm_checkpoint_file_g and is defined by the following:

Flight_array2 is of type flight_array2_ptr.

This type is defined as ^flight_array2_t. Flight_array2_t is an array of flight_table_entry2_t.

Table 18–7. flight_array2_t Data Structure

flight_array2_t
Library Name: etms_lib Purpose:

Array of flight_table_entry2_t

Element Name: ftm.mmu.ins

Data Item Definition Unit/Format Range Var. Type/Bits
flight_array2_t Array of flight_table_entry2_t. total_flight_records =

125,000
1…total_flight_

records
array

ETMS System Design Document
Version 5.8

18–59

Table 18–8. flight_table_entry2_t Data Structure

flight_table_entry2_t
Library Name: etms_lib Purpose:

To contain the fixed portion of the flight record.

Element Name: flight_table.ins

Data Item Definition Unit/Format Range Var. Type/Bits
filed_ascii_alt Filed ASCII altitude char8

ascii_altitude ASCII altitude char8

arrival_fix Arrival fix char6

ac_type Aircraft type char4

dep_schedule Scheduled departure time Whole seconds integer32

dep_proposed Proposed departure time Whole seconds integer32

dep_estimate Estimated departure time Whole seconds integer32

dep_controlled Controlled departure time Whole seconds integer32

dep_actual Actual departure time Whole seconds integer32

ogtd Original gate time of departure Whole seconds integer32

arr_schedule Scheduled arrival time Whole seconds integer32

arr_proposed Proposed arrival time Whole seconds integer32

arr_estimate Estimated arrival time Whole seconds integer32

arr_controlled Controlled arrival time Whole seconds integer32

arr_actual Actual arrival time Whole seconds integer32

ogta Original gate time of arrival Whole seconds integer32

last_distance Most recently computed distance to
destination

Miles integer32

arrival_fix_time Arrival fix time Whole seconds integer32

last_posit Time of last position update Whole seconds integer32

posit_2_time Time at position 2 Whole seconds integer32

posit_3_time Time at position 3 Whole seconds integer32

last_upd_time Last time received message for flight Whole seconds integer32

creation_time Time flight created by FTM Whole seconds integer32

route_ptr Route pointer integer32

calc_time Time at calculated position Whole seconds integer32

route_ptr_size Size of Field 10 (flight’s route) integer32

route_size_code Number of bytes required to store
route in FTM database

integer32

ete Estimated time enroute Minutes integer16

ETMS System Design Document
Version 5.8

18–60

Table 18–8. flight_table_entry2_t Data Structure (continued)

flight_table_entry2_t
Library Name: etms_lib Purpose:

To contain the fixed portion of the flight record.

Element Name: flight_table.ins

Data Item Definition Unit/Format Range Var. Type/Bits
altitude Altitude 100 Feet integer16

altitude2 Altitude 2 (for use with block
altitudes)

100 Feet integer16

prev_lat Previous latitude Degrees*60 +
Minutes

integer16

prev_lon Previous longitude Degrees*60 +
Minutes

integer16

cur_lat Current latitude Degrees*60 +
Minutes

integer16

cur_lon Current longitude Degrees*60 +
Minutes

integer16

next_lat Next latitude Degrees*60 +
Minutes

integer16

next_lon Next longitude Degrees*60 +
Minutes

integer16

second_lat Second latitude Degrees*60 +
Minutes

integer16

second_lon Second longitude Degrees*60 +
Minutes

integer16

third_lat Third latitude Degrees*60 +
Minutes

integer16

third_lon Third longitude Degrees*60 +
Minutes

integer16

groundspeed Speed Knots integer16

dest_lat Destination latitude Degrees*60 +
Minutes

integer16

dest_lon Destination longitude Degrees*60 +
Minutes

integer16

filed_alt Filed altitude 100 Feet integer16

filed_speed Filed speed Knots integer16

filed_alt2 Filed altitude 2 (for use with block
altitude)

100 Feet integer16

could_have_landed Whether the flight projected to have
landed by FTM

100 Feet 0=no
1=yes

integer16

calc_lat Calculated latitude Degrees*60 +
Minutes

integer16

calc_lon Calculated longitude Degrees*60 +
Minutes

integer16

ETMS System Design Document
Version 5.8

18–61

Table 18–8. flight_table_entry2_t Data Structure (continued)

flight_table_entry2_t
Library Name: etms_lib Purpose:

To contain the fixed portion of the flight record.

Element Name: flight_table.ins

Data Item Definition Unit/Format Range Var. Type/Bits
filler Reserved array[1…16] of

integer16

flags Flight flags See 18.4.1.3 integer16

source_flags Flight flags – part 2 See 18.4.1.4 integer16

remarks_flags Field 11 comment flags integer16

geo_filter Reserved for future geographical
filter bitmask

integer16

altitude_type Altitude type char

update_ctr ARTCC from which last update
originated

char

flight_status Status of flight See 18.4.1.5 char

air_category Aircraft category (physical class) See 18.4.1.6 char

user_category User category See 18.4.1.7 char

wght_category Weight category S=Small, L=Large,
H=Heavy

S,L,H char

arrival_ctr Arrival ARTCC char

depart_ctr Departure ARTCC char

waypoints Number of 4 byte waypoints in
flight’s route

char

sectors Number of 6 byte waypoints in
flight’s route

char

fixes Number of 6 byte fixes in flight’s
route

char

airways Number of 6-byte airways in flight’s
route

char

centers Number of 3-byte centers in flight’s
route

char

ETMS System Design Document
Version 5.8

18–62

Table 18–8. flight_table_entry2_t Data Structure (continued)

flight_table_entry2_t
Library Name: etms_lib Purpose:

To contain the fixed portion of the flight record.

Element Name: flight_table.ins

Data Item Definition Unit/Format Range Var. Type/Bits
field_10_size Size of field 10 (flight’s route) char

time_used Time field indicator char

prefix_digit Field 3 aircraft type prefix digit char

prefix_char Field 3 aircraft type prefix char char

suffix_char Field 3 aircraft type suffix char char

international Whether flight is international TRUE,FALSE boolean

ghost_to_route Whether flight has a next position to
ghost toward

TRUE,FALSE boolean

ETMS System Design Document
Version 5.8

18–63

18.4.1.3 Flags
The Flags field can have any of the following bit values:

0 = Military flight

1 = Weight Category 1 (Small) of aircraft

2 = Weight Category 2 (Large) of aircraft

3 = Weight Category 3 (Heavy) of aircraft

4 = Received CANCEL message

5 = Received CRITICAL message

6 = Received POSITION message

7 = Received ROUTE message

8 = Received TIME message

9 = Received TTM_FTM message

10 = Received TZ message

11 = Received BLOCK_ALT message

12 = Received RAW TZ message

13 = Received RAW DZ message

14 = Reserved

15 = Flight in holding pattern

18.4.1.4 Source Flags
The Source_Flags field can have any of the following bit values:

0 = Received DZ message

1 = Received FZ message

2 = Received UZ message

3 = Received AF message

4 = Received FS message

5 = Received AZ message

6 = Received RS message

7 = Received RZ message

8 = Received TO message

ETMS System Design Document
Version 5.8

18–64

9 = Received TA message

10 = Received FY message

11 = Received RY message

12 = Received EDCT message

13 = Received 5-SETBACK message

14 = Received SI CANCEL message

15 = Received CONTROL CANCEL message

18.4.1.5 Flight Status
The Flight Status field can have one of the following values:

N = None

S = Scheduled

F = Filed

A = Active

R = Ascending

C = Cruising

D = Descending

T = Completed

X = Cancelled

E = Error

“” = Not determined

ETMS System Design Document
Version 5.8

18–65

18.4.1.6 Air Category
The Air Category field can have one of the following values:

“” = Not determined

P = Piston

T = Turbo

J = Jet

18.4.1.7 User Category
The User Category field can have one of the following values:

O = Other

T = Air taxi

F = Cargo

C = Commercial

G = General aviation

M = Military

“” = Not determined

18.4.1.8 Miscellaneous parameters
Miscellaneous parameters in flight_array2 are:

waypoints – number of 4 byte binary entries, in Lat/Lon format of
degrees*60+minutes

sectors – number of 6 byte ASCII entries, left justified, blank filled, its starting
address is pointed to by seek_key + waypoints*4

fixes – number of 6 byte ASCII entries, left justified, blank filled, its starting
address is pointed to by seek_key + waypoints*4 + sectors*6

airways – number of 6 byte ASCII entries its starting address is pointed to by
seek_key + waypoints*4 + sectors*6+fixes*6

centers – number of 3 byte ASCII entries its starting address is pointed to by
seek_key + waypoints*4 + sectors*6 + fixes*6 + airways*6

route_size – number of ASCII bytes, starting address is pointed to by seek_key +
waypoints*4 + sectors*6+fixes*6 + airways*6 + centers*3

ETMS System Design Document
Version 5.8

18–66

total_ptr_size – waypoints*4 + sectors*6+fixes*6 + airways*6 + centers*3 +
route_size

The arrival_time_code or departure_time_code has the following values:

0 = Not specified

1 = Actual

2 = Traffic Model Functions/estimated

3 = Controlled

4 = Proposed

5 = Scheduled

The following is used to determine time_used:

time_used = arrival_time_code * 20 + departure_time_code

The following is used for a flight using actual departure and proposed arrival:

time_used := chr (1 + 20 * 4) = chr (81)

Flight_array_rte is the key to ftm_checkpoint_file_b and is defined by the following:

Flight_array_rte is of type flight_rte_array_ptr.

This type is defined as ^flight_rte_array_t. Flight_rte_array_t (see Table 18-9) is an array of
flight_table_rte_entry_t (see Table 18-10).

Table 18–9. flight_rte_array_t Data Structure

flight_rte_array_t
Library Name: etms_lib Purpose:

Array of flight_table_rte_entry_t

Element Name: ftm_mmu.ins

Data Item Definition Unit/Format Range Var. Type/Bits
flight_rte_array_t Array of flight_table_rte_entry_t = total_flight_re-

cords*8
1…total_rte_pages array

ETMS System Design Document
Version 5.8

18–67

Table 18–10. flight_rte_entry_t Data Structure

flight_rte_entry_t
Library Name: etms_lib Purpose:

To contain the route portion of the flight record

Element Name: flight_table.ins

Data Item Definition Unit/Format Range Var. Type/Bits
text Text in this page 1…32 array of char

Flight_table_hash is the key to ftm_checkpoint_file_c and is defined by the following:

Flight_table_hash is of type flight_table_hash_ptr.

This type is defined as ^flight_table_hash_t. Flight_table_hash_t is an array of integer32.

Table 18–11. flight_table_hash_t Data Structure

flight_table_hash_t
Library Name: etms_lib Purpose:

To contain the hashing table for the flight database

Element Name: ftm_mmu.ins

Data Item Definition Unit/Format Range Var. Type/Bits
flight_table_hash_t Array of integer32. flight_table_hash

_size= 20001
1…flight_table_hash

_size
array

Flight_storage is the key to ftm_checkpoint_file_d and is defined by the following:

Flight_storage is of type ^flight_storage_bit_t.

Flight_storage_bit_t is a record. Two elements of this record are of type zero_one .

ETMS System Design Document
Version 5.8

18–68

Table 18–12. flight_storage_bit_t Data Structure

flight_storage_bit_t
Library Name: etms_lib Purpose:

To contain the flight storage information

Element Name: ftm_mmu.ins

Data Item Definition Unit/Format Range Var. Type/Bits
flights Array of zero_one_t. Zero_one_t

= 0.1
total_flight_records
= 125,000

1…total_flight_
records

array

routes Array of zero_one_t. Zero_one_t
= 0.1

total_rte_pages
125,ooo*8

1…total_rte_pages array

Flight_active is the key to ftm_checkpoint_file_e and is defined by the following:

Flight_active is of type active_table_ptr_t.

This type is defined as ^active_table_t. Active_table_t is an array of active_entry_t.

Table 18–12. active_table_t Data Structure

active_table_t
Library Name: etms_lib Purpose:

To contain the active flight information

Element Name: ftm_mmu.ins

Data Item Definition Unit/Format Range Var. Type/Bits
bitmap Array of zero_one_t. Zero_one_t

= 0.1
number_actives…
= 6,000

1…number_actives_
allowed

array

hash Hash table for active flights active_flight_
hash_size=1,001

1…active_flight_
hash_size

array of integer

entry Array of active_entry_t 1..number_actives_
allowed

array

ETMS System Design Document
Version 5.8

18–69

Table 18–14. active_entry_t Data Structure

active_entry_t
Library Name: etms_lib Purpose:

To contain the active flight entries

Element Name: ftm_mmu.ins

Data Item Definition Unit/Format Range Var. Type/Bits
acid Aircraft identifier. char7

flight Link to flight entry in flight array. integer32

next_one Link for next flight in linked list. integer

index Flight index. integer32

filler Reserved. char3

Flight_airport is the key to ftm_checkpoint_file_f and is defined by the following:

Flight_airport is of type airport_space_ptr_t.

This type is defined as ^airport_space_t. Airport_space_t has an element composed of
airport_entry_t. Airport_entry_t is an array of airport_time_t.

ETMS System Design Document
Version 5.8

18–70

Table 18–15. airport_space_t Data Structure

airport_space_t
Library Name: etms_lib Purpose:

To contain the airport information

Element Name: ftm_mmu.ins

Data Item Definition Unit/Format Range Var. Type/Bits
airports_used Number of airports used. integer

interval_start Interval start time. integer32

which_is_first First airport name. integer

name Airport name. max_number_
airport=100

1…max_number_
airports

array of char4

entry Array of airport_entry_t. 1…max_number_
airports

array

Table 18–16. airport_entry_t Data Structure

airport_entry_t
Library Name: etms_lib Purpose:

Array of airport_time_t

Element Name: ftm_mmu.ins

Data Item Definition Unit/Format Range Var. Type/Bits
airport_entry_t Array of airport_time_t. † See below. 1…airport_number

_intervals
array

† Airport_number_intervals = (retention_period div [60*60]*4*2*4)

ETMS System Design Document
Version 5.8

18–71

Table 18–17. airport_time_t Data Structure

airport_time_t
Library Name: etms_lib Purpose:

To contain airport time information

Element Name: ftm_mmu.ins

Data Item Definition Unit/Format Range Var. Type/Bits
arr_count Arrival count. integer

dep_count Departure count. integer

arr_list Arrival list. max_flights_in_
airport_list = 50

1…max_flights_in_
airport_list

array of integer32

dep_list Departure list. 1…max_flights_in_
airport_list

array of integer32

Table 18–18. shared_region_header_t Data Structure

shared_region_header_t
Library Name: etms_lib Purpose:

To contain information about the shared regions

Element Name: ftm_constants.ins

Data Item Definition Unit/Format Range Var. Type/Bits
creation_time Time of shared region creation. time_$clock_t

running_time Time elapsed since region creation. integer32

start_count Number FTM starts since region
creation.

integer32

stop_count Number FTM shut downs since
region creation.

integer32

total_flights_made Flights added to database since
region creation.

integer32

total_flights_del Flights removed from database
since region creation.

integer32

shut_down_time Last time FTM was shut down. integer32

18.4.2 The flight_table_entry_t Data Structure
Table 18-19 contains information on the format of the flight_table_entry_t record structure.
This record is the combination of the data in flight_array1 and flight_array2 described in the
preceding section. This structure is traversed each time a map file is produced.

ETMS System Design Document
Version 5.8

18–72

Table 18–19. flight_table_entry_t Data Structure

flight_table_entry_t
Library Name: etms_lib Purpose:

To contain the flight database entries for FTM.

Element Name: flight_table.ins

Data Item Definition Unit/Format Range Var. Type/Bits
acid Aircraft identifier char10

ascii_altitude ASCII altitude char8

ascii_file_alt Filed ASCII altitude char8

arrival_fix Arrival fix char6

dep_air Departure airport char5

arr_air Arrival airport char5

ac_type Aircraft type char4

flight_index Flight index integer32

dep_schedule Scheduled departure time Whole seconds integer32

dep_proposed Proposed departure time Whole seconds integer32

dep_estimate Estimated departure time Whole seconds integer32

dep_controlled Controlled departure time Whole seconds integer32

dep_actual Actual departure time Whole seconds integer32

ogtd Original gate time of departure Whole seconds integer32

arrival_fix_time Arrival fix time Whole seconds integer32

arr_schedule Scheduled arrival time Whole seconds integer32

arr_proposed Proposed arrival time Whole seconds integer32

arr_estimate Estimated arrival time Whole seconds integer32

arr_controlled Controlled arrival time Whole seconds integer32

arr_actual Actual arrival time Whole seconds integer32

ogta Original gate time of arrival Whole seconds integer32

route_ptr Route pointer integer32

calc_time Time flight at calculated position Whole seconds integer32

ete Estimated time enroute Minutes integer16

altitude Altitude 100 feet integer16

altitude2 Altitude2 (for use with block
altitudes)

100 feet integer16

altitude_filed Filed altitude 100 feet integer16

ETMS System Design Document
Version 5.8

18–73

Table 18–19. flight_table_entry_t Data Structure (Continued)

flight_table_entry_t
Library Name: etms_lib Purpose:

To contain the flight database entries for FTM.

Element Name: flight_table.ins

Data Item Definition Unit/Format Range Var. Type/Bits
cur_lon Current longitude Degrees*60 +

Minutes
integer16

cur_lat Current latitude Degrees*60 +
Minutes

integer16

calc_lon Calculated longitude Degrees*60 +
Minutes

integer16

calc_lat Calculated latitude Degrees*60 +
Minutes

integer16

groundspeed Speed Knots integer16

speed_filed Filed speed Knots integer16

dest_lat Destination latitude Degrees*60 +
Minutes

integer16

dest_lon Destination longitude Degrees*60 +
Minutes

integer16

route_ptr_size Size of field 10 (flight’s route) integer16

flags Flight flags See flight table_
entry1_t

integer16

source_flags Flight flags – part 2 See flight table_
entry1_t

integer16

remarks_flags Field 11 comments flags integer16

geo_filter Reserved for future geographical
bitmask

integer16

filler Reserved array[1…16] of
integer16

altitude_type Altitude type char

active Flight’s active status See flight table_
entry1_t

char

update_type Message type of last update See flight table_
entry1_t

char

flight_status Status of flight See flight table_
entry1_t

char

air_category Aircraft category (physical class) See flight table_
entry1_t

char

user_category User category See flight table_
entry1_t

char

arrival_ctr Arrival center char

ETMS System Design Document
Version 5.8

18–74

Table 18–19. flight_table_entry_t Data Structure (Continued)

flight_table_entry_t
Library Name: etms_lib Purpose:

To contain the flight database entries for FTM.

Element Name: flight_table.ins

Data Item Definition Unit/Format Range Var. Type/Bits
departure_ctr Departure center char

waypoints Number of 4-byte waypoints in
flight’s route

char

sectors Number of 6-byte sectors in flight’s
route

char

fixes Number of 6-byte fixes in flight’s
route

char

airways Number of 6-byte airway identifiers
in flight’s route

char

centers Number of 3-byte ARTCC identifiers
in flight’s route

char

field_10_size Size of field 10 (flight’s route) char

time_used Time field indicator char

prefix_digit Field 3 aircraft type prefix digit char

prefix_char Field 3 aircraft type prefix char char

suffix_char Field 3 aircraft type suffix char char

ETMS System Design Document
Version 5.8

18–75

Refer to the previous section for more details on the contents of the fields of the
flight_table_entry_t record structure.

18.4.3 The map_output_record_t Data Structure
The reports sent to the ASD by FTM are known collectively as map files. The map file currently
consists of two files: the map flight file and the map route file. The flight file contains
information about each flight in a fixed record format. The route file is composed of variable
sized records which are the exact images of the structures pointed to by the route_ptr field of
flight_table_entry_t. This structure, map_output_record_t, is written into the map file for
each flight. Table 18-20 contains the format of the map_output_record_t record structure.

Refer to the flight_table_entry2_t section for details on the values of the flags field.

The following provides a more detailed description of some fields in the record:

x_current, y_current – These fields define the estimated aircraft position based
upon the last two reported positions to the FTM. These values are time-adjusted
by aircraft speed from the last reported position. If the flight is ghostable and no
TZs have been received, the position estimate is a straight line from the last
reported position to the destination airport. For an international flight under these
same circumstances, a great circle route between last reported position and
destination is made.

x_previous , y_previous – These fields are similar to the above except for using the
second most recent reported position.

heading – This field is calculated from the previous and current flight data.

symbol – This field states how the aircraft should be displayed:

^ – Display as a circle
a through h – indicates each angle from 0-359 in units of 45 degrees

i through p – similar to a through h except the aircraft is a ghost

@ – Indicates the flight is a time record

seek_key – This field contains the address in the map route file of the route data for
this flight. It is set to 16#FFFFFFFF if there are no route data.

The X, Y values in the records are in Albers projections.

ETMS System Design Document
Version 5.8

18–76

Table 18–20. map_output_record_t Data Structure

map_output_record_t
Library Name: etms_lib Purpose:

To contain the flight information used to build MAP files.

Element Name: maps_interface.ins

Data Item Definition Unit/Format Range Var. Type/Bits
acid Aircraft identifier char10

ascii_altitude ASCII altitude char8

origin Departure airport char5

destination Arrival airport char5

ac_type Aircraft type char4

eta Estimated time of arrival integer32

seek_key Key to route data for flight integer32

altitude Altitude 100 feet integer16

altitude2 Altitude2 (for use with block
altitudes)

100 feet integer16

current_x Alber’s current longitude integer16

current_y Alber’s current latitude integer16

previous _x Alber’s previous longitude integer16

previous _y Alber’s previous latitude integer16

current_lat Current latitude Degrees*60 +
Minutes

integer16

cur_lon Current longitude Degrees*60 +
Minutes

integer16

previous _lat Previous latitude Degrees*60 +
Minutes

integer16

previous _lon Previous longitude Degrees*60 +
Minutes

integer16

heading Heading integer16

groundspeed Speed Knots integer16

cta Cleared time to arrival Minutes integer16

flags Flight flags See flight_table_
entry1_t

integer16

source_flags Flight flags – part 2 See flight_table_
entry1_t

integer16

remarks_flags Field 11 comments flags integer16

geo_filter Reserved for future geographical
bitmask

integer16

ETMS System Design Document
Version 5.8

18–77

Table 18–20. map_output_record_t Data Structure (continued)

map_output_record_t
Library Name: etms_lib Purpose:

To contain the flight information used to build MAP files.

Element Name: maps_interface.ins

Data Item Definition Unit/Format Range Var. Type/Bits
filler Reserved array (1…13)

integer16

center_id ARTCC identifier char

altitude_type Altitude type char

lat_lon_heading Lat/lon heading divided by 2 char

symbol Indicator for flight display type char

waypoints Number of 4-byte waypoints in
flight’s route

char

sectors Number of 6-byte sectors in flight’s
route

char

fixes Number of 6-byte fixes in flight’s
route

char

airways Number of 3-byte airways in flight’s
route

char

centers Number of 3-byte center IDs in
flight’s route

char

field_10_size Size of field 10 (flight’s route) char

actr Arrival ARTCC char

dctr Departure ARTCC char

last_update Last update message type See flight_table_
entry1_t

char

air_cat Aircraft category See flight_table_
entry1_t

char

prefix_digit Field 3 aircraft type prefix digit char

prefix_char Field 3 aircraft type prefix char char

suffix_char Field 3 aircraft type suffix char char

ghost_to_rte Whether flight has a next position to
ghost toward

TRUE,FALSE boolean

ETMS System Design Document
Version 5.8

18–78

Table 18–21. Error Messages

Error Message Description Responsible
Module

1 ...shutting down...argument does not
exist
[NOTE: This error message is written
to the screen; all others are written to
the trace file.]

FTM was invoked without a
valid configuration filename
specified.

Main

2 bad pacing airport line Invalid line in airport location
file.

Airport Table

3 invalid route size Flight has invalid route
information.

Extract

4 cannot open route file FTM unable to create route
file.

Extract

5 cannot open map file FTM unable to create map file. Extract
6 error writing to route file FTM unable to write to route

file.
Extract

7 error writing to map file FTM unable to write to map
file.

Extract

8 invalid hash value FTM database access error. Flight–
Handle

9 received bad registration notice from
<ETMS address>

FTM failed in attempt to
register as transaction data
client to FDBD or a master
FTM.

Interface

10 ignoring recovery message from
<ETMS address>

FTM received recovery
message from site other than
registered site.

Interface

11 FTM input file is not available - needed
for execution

FTM unable to open airport
location file:
‘/etms5/ftm/data/airstrip.dat’.

Airport
Table, Misc.

12 invalid or non-existent keyword file FTM unable to open Field 11
keyword file:
‘/etms5/shared/data/remarks_k
eywords’.

Interface,
Misc.

13 FTM no data timeout FTM failed to receive
transaction data for over 1
minute.

Misc.

14 Switching sites because no data in 1
minute

FTM switching from primary to
secondary FDBD site, or vice-
versa, due to data timeout.

Misc.

15 Switching sites because no fdbd
connection within 3 minutes of
registration attempt

FTM switching from primary to
secondary FDBD site, or vice-
versa, due to registration
timeout.

Misc.

16 invalid bit in keyword file Keyword file has bad data
entry.

Misc.

17 no longer attempting recovery after one
hour

Recovery timeout notification. Recovery

